0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
MINUS(s(x), s(y)) → MINUS(x, y)
LE(s(x), s(y)) → LE(x, y)
QUOT(x, s(y)) → IF_QUOT(le(s(y), x), x, s(y))
QUOT(x, s(y)) → LE(s(y), x)
IF_QUOT(true, x, y) → QUOT(minus(x, y), y)
IF_QUOT(true, x, y) → MINUS(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
LE(s(x), s(y)) → LE(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
trivial
s1: [1]
LE1: [1]
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
MINUS(s(x), s(y)) → MINUS(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
trivial
s1: [1]
MINUS1: [1]
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)
IF_QUOT(true, x, y) → QUOT(minus(x, y), y)
QUOT(x, s(y)) → IF_QUOT(le(s(y), x), x, s(y))
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(x, s(y)) → if_quot(le(s(y), x), x, s(y))
if_quot(true, x, y) → s(quot(minus(x, y), y))
if_quot(false, x, y) → 0
minus(x0, 0)
minus(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
quot(x0, s(x1))
if_quot(true, x0, x1)
if_quot(false, x0, x1)