(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVEN(s(s(x))) → EVEN(x)
HALF(s(s(x))) → HALF(x)
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → IF_TIMES(even(s(x)), s(x), y)
TIMES(s(x), y) → EVEN(s(x))
IF_TIMES(true, s(x), y) → PLUS(times(half(s(x)), y), times(half(s(x)), y))
IF_TIMES(true, s(x), y) → TIMES(half(s(x)), y)
IF_TIMES(true, s(x), y) → HALF(s(x))
IF_TIMES(false, s(x), y) → PLUS(y, times(x, y))
IF_TIMES(false, s(x), y) → TIMES(x, y)

The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVEN(s(s(x))) → EVEN(x)

The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → IF_TIMES(even(s(x)), s(x), y)
IF_TIMES(true, s(x), y) → TIMES(half(s(x)), y)
IF_TIMES(false, s(x), y) → TIMES(x, y)

The TRS R consists of the following rules:

even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))

The set Q consists of the following terms:

even(0)
even(s(0))
even(s(s(x0)))
half(0)
half(s(s(x0)))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
if_times(true, s(x0), x1)
if_times(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.