0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 QDPOrderProof (⇔)
↳16 QDP
↳17 PisEmptyProof (⇔)
↳18 TRUE
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
PLUS(s(x), y) → PLUS(x, y)
QUOT(x, 0, s(z)) → QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) → PLUS(z, s(0))
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
PLUS(s(x), y) → PLUS(x, y)
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(x), y) → PLUS(x, y)
trivial
PLUS2: [1,2]
s1: [1]
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
QUOT(x, 0, s(z)) → QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
[QUOT2, 0, plus] > s1
QUOT2: [1,2]
plus: multiset
s1: [1]
0: multiset
QUOT(x, 0, s(z)) → QUOT(x, plus(z, s(0)), s(z))
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(x, 0, s(z)) → QUOT(x, plus(z, s(0)), s(z))
0 > [s, plus1] > QUOT3
QUOT3: [3,2,1]
plus1: [1]
s: []
0: multiset
plus(s(x), y) → s(plus(x, y))
plus(0, y) → y
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
plus(0, x0)
plus(s(x0), x1)
quot(x0, 0, s(x1))