(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))
The set Q consists of the following terms:
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
quot(x0, 0, s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → QUOT(x, s(z), s(z))
The TRS R consists of the following rules:
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(quot(x, s(z), s(z)))
The set Q consists of the following terms:
quot(0, s(x0), s(x1))
quot(s(x0), s(x1), x2)
quot(x0, 0, s(x1))
We have to consider all minimal (P,Q,R)-chains.