(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(0), g(x)) → F(x, g(x))
G(s(x)) → G(x)

The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(x)) → G(x)

The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(s(x)) → G(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > G1


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(0), g(x)) → F(x, g(x))

The TRS R consists of the following rules:

f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.