(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(cons, h), t)), l) → APP(app(cons, h), app(app(append, t), l))
APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
APP(app(append, app(app(cons, h), t)), l) → APP(append, t)
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
APP(app(append, app(app(append, l1), l2)), l3) → APP(append, l2)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(append, app(app(map, f), l1)), app(app(map, f), l2))
APP(app(map, f), app(app(append, l1), l2)) → APP(append, app(app(map, f), l1))
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

append1(append(l1, l2), l3) → append1(l1, append(l2, l3))
append1(cons(h, t), l) → append1(t, l)
append1(append(l1, l2), l3) → append1(l2, l3)

The a-transformed usable rules are

append(nil, l) → l
append(cons(h, t), l) → cons(h, append(t, l))
append(append(l1, l2), l3) → append(l1, append(l2, l3))


The following pairs can be oriented strictly and are deleted.


APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
append1(x1, x2)  =  append1(x1)
append(x1, x2)  =  append(x1, x2)
cons(x1, x2)  =  x2
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
append11 > append2
nil > append2

Status:
append11: [1]
append2: [1,2]
nil: []


The following usable rules [FROCOS05] were oriented:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

append1(cons(h, t), l) → append1(t, l)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
append1(x1, x2)  =  append1(x1, x2)
cons(x1, x2)  =  cons(x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[append12, cons1]

Status:
append12: [2,1]
cons1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x2)
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
append  =  append

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons > map > [app2, append] > APP1

Status:
APP1: [1]
app2: [2,1]
map: []
cons: []
append: []


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE