(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(append, app(app(cons, x), xs)), ys) → APP(app(cons, x), app(app(append, xs), ys))
APP(app(append, app(app(cons, x), xs)), ys) → APP(app(append, xs), ys)
APP(app(append, app(app(cons, x), xs)), ys) → APP(append, xs)
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(cons, app(app(append, xs), ys))
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(app(append, xs), ys)
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(append, xs)
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(app(zip, xss), yss)
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(zip, xss)
APP(app(combine, xs), app(app(cons, ys), yss)) → APP(app(combine, app(app(zip, xs), ys)), yss)
APP(app(combine, xs), app(app(cons, ys), yss)) → APP(combine, app(app(zip, xs), ys))
APP(app(combine, xs), app(app(cons, ys), yss)) → APP(app(zip, xs), ys)
APP(app(combine, xs), app(app(cons, ys), yss)) → APP(zip, xs)
APP(levels, app(app(node, x), xs)) → APP(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
APP(levels, app(app(node, x), xs)) → APP(cons, app(app(cons, x), nil))
APP(levels, app(app(node, x), xs)) → APP(app(cons, x), nil)
APP(levels, app(app(node, x), xs)) → APP(cons, x)
APP(levels, app(app(node, x), xs)) → APP(app(combine, nil), app(app(map, levels), xs))
APP(levels, app(app(node, x), xs)) → APP(combine, nil)
APP(levels, app(app(node, x), xs)) → APP(app(map, levels), xs)
APP(levels, app(app(node, x), xs)) → APP(map, levels)
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 19 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(append, app(app(cons, x), xs)), ys) → APP(app(append, xs), ys)
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → APP(app(zip, xss), yss)
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(combine, xs), app(app(cons, ys), yss)) → APP(app(combine, app(app(zip, xs), ys)), yss)
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(levels, app(app(node, x), xs)) → APP(app(map, levels), xs)
The TRS R consists of the following rules:
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(append, xs), nil) → xs
app(app(append, nil), ys) → ys
app(app(append, app(app(cons, x), xs)), ys) → app(app(cons, x), app(app(append, xs), ys))
app(app(zip, nil), yss) → yss
app(app(zip, xss), nil) → xss
app(app(zip, app(app(cons, xs), xss)), app(app(cons, ys), yss)) → app(app(cons, app(app(append, xs), ys)), app(app(zip, xss), yss))
app(app(combine, xs), nil) → xs
app(app(combine, xs), app(app(cons, ys), yss)) → app(app(combine, app(app(zip, xs), ys)), yss)
app(levels, app(app(node, x), xs)) → app(app(cons, app(app(cons, x), nil)), app(app(combine, nil), app(app(map, levels), xs)))
The set Q consists of the following terms:
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(append, x0), nil)
app(app(append, nil), x0)
app(app(append, app(app(cons, x0), x1)), x2)
app(app(zip, nil), x0)
app(app(zip, x0), nil)
app(app(zip, app(app(cons, x0), x1)), app(app(cons, x2), x3))
app(app(combine, x0), nil)
app(app(combine, x0), app(app(cons, x1), x2))
app(levels, app(app(node, x0), x1))
We have to consider all minimal (P,Q,R)-chains.