(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(s, app(app(add, x), y))
APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(add, app(s, x)), y) → APP(add, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(app(add, x), y)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(add, app(s, x)), y) → APP(app(add, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1, x2)
app(x1, x2)  =  app(x2)
add  =  add
s  =  s
0  =  0
id  =  id

Lexicographic path order with status [LPO].
Quasi-Precedence:
add > [app1, id] > [APP2, s]
0 > [app1, id] > [APP2, s]

Status:
APP2: [1,2]
app1: [1]
add: []
s: []
0: []
id: []


The following usable rules [FROCOS05] were oriented:

app(add, 0) → id

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[app2, map] > [APP2, cons]

Status:
APP2: [2,1]
app2: [2,1]
map: []
cons: []


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(id, x0)
app(add, 0)
app(app(add, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE