(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(id, x) → x
app(plus, 0) → id
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(id, x) → x
app(plus, 0) → id
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
The set Q consists of the following terms:
app(id, x0)
app(plus, 0)
app(app(plus, app(s, x0)), x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
The TRS R consists of the following rules:
app(id, x) → x
app(plus, 0) → id
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
The set Q consists of the following terms:
app(id, x0)
app(plus, 0)
app(app(plus, app(s, x0)), x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The TRS R consists of the following rules:
app(id, x) → x
app(plus, 0) → id
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
The set Q consists of the following terms:
app(id, x0)
app(plus, 0)
app(app(plus, app(s, x0)), x1)
We have to consider all minimal (P,Q,R)-chains.