(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(app(times, app(s, x)), y) → APP(app(plus, app(app(times, x), y)), y)
APP(app(times, app(s, x)), y) → APP(plus, app(app(times, x), y))
APP(app(times, app(s, x)), y) → APP(app(times, x), y)
APP(app(times, app(s, x)), y) → APP(times, x)
APP(inc, xs) → APP(app(map, app(plus, app(s, 0))), xs)
APP(inc, xs) → APP(map, app(plus, app(s, 0)))
APP(inc, xs) → APP(plus, app(s, 0))
APP(inc, xs) → APP(s, 0)
APP(double, xs) → APP(app(map, app(times, app(s, app(s, 0)))), xs)
APP(double, xs) → APP(map, app(times, app(s, app(s, 0))))
APP(double, xs) → APP(times, app(s, app(s, 0)))
APP(double, xs) → APP(s, app(s, 0))
APP(double, xs) → APP(s, 0)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 14 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, app(s, x)), y) → APP(app(times, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(inc, xs) → APP(app(map, app(plus, app(s, 0))), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(double, xs) → APP(app(map, app(times, app(s, app(s, 0)))), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(inc, xs) → APP(app(map, app(plus, app(s, 0))), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
inc  =  inc
app(x1, x2)  =  x2
map  =  map
plus  =  plus
s  =  s
0  =  0
cons  =  cons
double  =  double
times  =  times
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
inc > map > [0, double]
[plus, s] > times > [0, double]
cons > map > [0, double]
nil > [0, double]

Status:
inc: multiset
map: multiset
plus: multiset
s: multiset
0: multiset
cons: multiset
double: multiset
times: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(double, xs) → APP(app(map, app(times, app(s, app(s, 0)))), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(double, xs) → APP(app(map, app(times, app(s, app(s, 0)))), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
app(x1, x2)  =  x2
map  =  map
cons  =  cons
double  =  double
times  =  times
s  =  s
0  =  0
plus  =  plus
inc  =  inc
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
cons > map > 0
double > map > 0
double > s > 0
times > 0
[plus, inc] > map > 0
[plus, inc] > s > 0
nil > 0

Status:
map: multiset
cons: multiset
double: multiset
times: multiset
s: multiset
0: multiset
plus: multiset
inc: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(times, 0), y) → 0
app(app(times, app(s, x)), y) → app(app(plus, app(app(times, x), y)), y)
app(inc, xs) → app(app(map, app(plus, app(s, 0))), xs)
app(double, xs) → app(app(map, app(times, app(s, app(s, 0)))), xs)
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(times, 0), x0)
app(app(times, app(s, x0)), x1)
app(inc, x0)
app(double, x0)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))

We have to consider all minimal (P,Q,R)-chains.