(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

The set Q consists of the following terms:

app(app(mapbt, x0), app(leaf, x1))
app(app(mapbt, x0), app(app(app(branch, x1), x2), x3))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(leaf, x)) → APP(leaf, app(f, x))
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(branch, app(f, x)), app(app(mapbt, f), l))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(branch, app(f, x))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

The set Q consists of the following terms:

app(app(mapbt, x0), app(leaf, x1))
app(app(mapbt, x0), app(app(app(branch, x1), x2), x3))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

The set Q consists of the following terms:

app(app(mapbt, x0), app(leaf, x1))
app(app(mapbt, x0), app(app(app(branch, x1), x2), x3))

We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
mapbt  =  mapbt
branch  =  branch
leaf  =  leaf

Recursive Path Order [RPO].
Precedence:
mapbt > APP1 > app2
branch > APP1 > app2
leaf > APP1 > app2

The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

The set Q consists of the following terms:

app(app(mapbt, x0), app(leaf, x1))
app(app(mapbt, x0), app(app(app(branch, x1), x2), x3))

We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

mapbt1(f, branch(x, l, r)) → mapbt1(f, l)
mapbt1(f, branch(x, l, r)) → mapbt1(f, r)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
mapbt1(x1, x2)  =  x2
branch(x1, x2, x3)  =  branch(x1, x2, x3)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

The set Q consists of the following terms:

app(app(mapbt, x0), app(leaf, x1))
app(app(mapbt, x0), app(app(app(branch, x1), x2), x3))

We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE