(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
APP(app(app(curry, f), x), y) → APP(f, x)
ADDAPP(curry, plus)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
plus  =  plus
s  =  s
0  =  0
curry  =  curry
add  =  add

Recursive path order with status [RPO].
Quasi-Precedence:
APP1 > [app2, plus] > s
0 > s
add > [app2, plus] > s
add > curry > s

Status:
APP1: multiset
app2: [1,2]
plus: multiset
s: multiset
0: multiset
curry: multiset
add: multiset


The following usable rules [FROCOS05] were oriented:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(curry, f), x), y) → APP(f, x)
APP(app(app(curry, f), x), y) → APP(app(f, x), y)

The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(app(curry, f), x), y) → APP(f, x)
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
curry  =  curry
plus  =  plus
0  =  0
s  =  s
add  =  add

Recursive path order with status [RPO].
Quasi-Precedence:
add > curry > [APP1, app2, s]
add > plus > [APP1, app2, s]

Status:
APP1: multiset
app2: [1,2]
curry: multiset
plus: multiset
0: multiset
s: multiset
add: multiset


The following usable rules [FROCOS05] were oriented:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
addapp(curry, plus)

The set Q consists of the following terms:

app(app(plus, 0), x0)
app(app(plus, app(s, x0)), x1)
app(app(app(curry, x0), x1), x2)
add

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE