(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, false), x), y) → y
app(app(app(until, p), f), x) → app(app(app(if, app(p, x)), x), app(app(app(until, p), f), app(f, x)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, false), x), y) → y
app(app(app(until, p), f), x) → app(app(app(if, app(p, x)), x), app(app(app(until, p), f), app(f, x)))
The set Q consists of the following terms:
app(app(app(if, true), x0), x1)
app(app(app(if, false), x0), x1)
app(app(app(until, x0), x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(until, p), f), x) → APP(app(app(if, app(p, x)), x), app(app(app(until, p), f), app(f, x)))
APP(app(app(until, p), f), x) → APP(app(if, app(p, x)), x)
APP(app(app(until, p), f), x) → APP(if, app(p, x))
APP(app(app(until, p), f), x) → APP(p, x)
APP(app(app(until, p), f), x) → APP(app(app(until, p), f), app(f, x))
APP(app(app(until, p), f), x) → APP(f, x)
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, false), x), y) → y
app(app(app(until, p), f), x) → app(app(app(if, app(p, x)), x), app(app(app(until, p), f), app(f, x)))
The set Q consists of the following terms:
app(app(app(if, true), x0), x1)
app(app(app(if, false), x0), x1)
app(app(app(until, x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(until, p), f), x) → APP(app(app(until, p), f), app(f, x))
APP(app(app(until, p), f), x) → APP(p, x)
APP(app(app(until, p), f), x) → APP(f, x)
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, false), x), y) → y
app(app(app(until, p), f), x) → app(app(app(if, app(p, x)), x), app(app(app(until, p), f), app(f, x)))
The set Q consists of the following terms:
app(app(app(if, true), x0), x1)
app(app(app(if, false), x0), x1)
app(app(app(until, x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.