(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, true), x), y) → y
app(app(takeWhile, p), nil) → nil
app(app(takeWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(takeWhile, p), xs))), nil)
app(app(dropWhile, p), nil) → nil
app(app(dropWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(dropWhile, p), xs)), app(app(cons, x), xs))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(app(app(if, app(p, x)), app(app(cons, x), app(app(takeWhile, p), xs))), nil)
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(app(if, app(p, x)), app(app(cons, x), app(app(takeWhile, p), xs)))
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(if, app(p, x))
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(app(cons, x), app(app(takeWhile, p), xs))
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(app(takeWhile, p), xs)
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(app(app(if, app(p, x)), app(app(dropWhile, p), xs)), app(app(cons, x), xs))
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(app(if, app(p, x)), app(app(dropWhile, p), xs))
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(if, app(p, x))
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(app(dropWhile, p), xs)
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, true), x), y) → y
app(app(takeWhile, p), nil) → nil
app(app(takeWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(takeWhile, p), xs))), nil)
app(app(dropWhile, p), nil) → nil
app(app(dropWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(dropWhile, p), xs)), app(app(cons, x), xs))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(app(takeWhile, p), xs)
APP(app(takeWhile, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(p, x)
APP(app(dropWhile, p), app(app(cons, x), xs)) → APP(app(dropWhile, p), xs)
The TRS R consists of the following rules:
app(app(app(if, true), x), y) → x
app(app(app(if, true), x), y) → y
app(app(takeWhile, p), nil) → nil
app(app(takeWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(cons, x), app(app(takeWhile, p), xs))), nil)
app(app(dropWhile, p), nil) → nil
app(app(dropWhile, p), app(app(cons, x), xs)) → app(app(app(if, app(p, x)), app(app(dropWhile, p), xs)), app(app(cons, x), xs))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.