(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(f, 0), 1), x) → APP(app(app(f, app(s, x)), x), x)
APP(app(app(f, 0), 1), x) → APP(app(f, app(s, x)), x)
APP(app(app(f, 0), 1), x) → APP(f, app(s, x))
APP(app(app(f, 0), 1), x) → APP(s, x)
APP(app(app(f, x), y), app(s, z)) → APP(s, app(app(app(f, 0), 1), z))
APP(app(app(f, x), y), app(s, z)) → APP(app(app(f, 0), 1), z)
APP(app(app(f, x), y), app(s, z)) → APP(app(f, 0), 1)
APP(app(app(f, x), y), app(s, z)) → APP(f, 0)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(cons, app(fun, x)), app(app(map, fun), xs))
APP(app(map, fun), app(app(cons, x), xs)) → APP(cons, app(fun, x))
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(filter2, app(fun, x)), fun), x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(filter2, app(fun, x)), fun)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(filter2, app(fun, x))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(cons, x), app(app(filter, fun), xs))
APP(app(app(app(filter2, true), fun), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(filter, fun)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(filter, fun)

The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 16 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(f, x), y), app(s, z)) → APP(app(app(f, 0), 1), z)
APP(app(app(f, 0), 1), x) → APP(app(app(f, app(s, x)), x), x)

The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

f1(x, y, s(z)) → f1(0, 1, z)
f1(0, 1, x) → f1(s(x), x, x)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(app(f, x), y), app(s, z)) → APP(app(app(f, 0), 1), z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
f1(x1, x2, x3)  =  x3
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Precedence:
trivial

Status:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(f, 0), 1), x) → APP(app(app(f, app(s, x)), x), x)

The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(10) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)

The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x2
app(x1, x2)  =  app(x1, x2)
cons  =  cons

Lexicographic path order with status [LPO].
Precedence:
trivial

Status:
trivial

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)

The TRS R consists of the following rules:

app(app(app(f, 0), 1), x) → app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) → app(s, app(app(app(f, 0), 1), z))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)

The set Q consists of the following terms:

app(app(app(f, 0), 1), x0)
app(app(app(f, x0), x1), app(s, x2))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(16) TRUE