(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
The set Q consists of the following terms:
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(f, 0)
app(f, app(s, x0))
app(g, 0)
app(g, app(s, x0))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, x)
APP(f, 0) → APP(s, 0)
APP(f, app(s, x)) → APP(app(minus, app(s, x)), app(g, app(f, x)))
APP(f, app(s, x)) → APP(minus, app(s, x))
APP(f, app(s, x)) → APP(g, app(f, x))
APP(f, app(s, x)) → APP(f, x)
APP(g, app(s, x)) → APP(app(minus, app(s, x)), app(f, app(g, x)))
APP(g, app(s, x)) → APP(minus, app(s, x))
APP(g, app(s, x)) → APP(f, app(g, x))
APP(g, app(s, x)) → APP(g, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(cons, app(fun, x)), app(app(map, fun), xs))
APP(app(map, fun), app(app(cons, x), xs)) → APP(cons, app(fun, x))
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(filter2, app(fun, x)), fun), x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(filter2, app(fun, x)), fun)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(filter2, app(fun, x))
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(cons, x), app(app(filter, fun), xs))
APP(app(app(app(filter2, true), fun), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(filter, fun)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(app(app(filter2, false), fun), x), xs) → APP(filter, fun)
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
The set Q consists of the following terms:
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(f, 0)
app(f, app(s, x0))
app(g, 0)
app(g, app(s, x0))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 15 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, x), y)
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
The set Q consists of the following terms:
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(f, 0)
app(f, app(s, x0))
app(g, 0)
app(g, app(s, x0))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(f, app(s, x)) → APP(g, app(f, x))
APP(g, app(s, x)) → APP(f, app(g, x))
APP(f, app(s, x)) → APP(f, x)
APP(g, app(s, x)) → APP(g, x)
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
The set Q consists of the following terms:
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(f, 0)
app(f, app(s, x0))
app(g, 0)
app(g, app(s, x0))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(map, fun), app(app(cons, x), xs)) → APP(app(map, fun), xs)
APP(app(map, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(fun, x)), fun), x), xs)
APP(app(app(app(filter2, true), fun), x), xs) → APP(app(filter, fun), xs)
APP(app(filter, fun), app(app(cons, x), xs)) → APP(fun, x)
APP(app(app(app(filter2, false), fun), x), xs) → APP(app(filter, fun), xs)
The TRS R consists of the following rules:
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, x), y)
app(f, 0) → app(s, 0)
app(f, app(s, x)) → app(app(minus, app(s, x)), app(g, app(f, x)))
app(g, 0) → 0
app(g, app(s, x)) → app(app(minus, app(s, x)), app(f, app(g, x)))
app(app(map, fun), nil) → nil
app(app(map, fun), app(app(cons, x), xs)) → app(app(cons, app(fun, x)), app(app(map, fun), xs))
app(app(filter, fun), nil) → nil
app(app(filter, fun), app(app(cons, x), xs)) → app(app(app(app(filter2, app(fun, x)), fun), x), xs)
app(app(app(app(filter2, true), fun), x), xs) → app(app(cons, x), app(app(filter, fun), xs))
app(app(app(app(filter2, false), fun), x), xs) → app(app(filter, fun), xs)
The set Q consists of the following terms:
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(f, 0)
app(f, app(s, x0))
app(g, 0)
app(g, app(s, x0))
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.