(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, x), app(s, y)) → APP(app(plus, app(app(times, x), y)), x)
APP(app(times, x), app(s, y)) → APP(plus, app(app(times, x), y))
APP(app(times, x), app(s, y)) → APP(app(times, x), y)
APP(app(plus, x), app(s, y)) → APP(s, app(app(plus, x), y))
APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 14 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

plus1(s(x), y) → plus1(x, y)
plus1(x, s(y)) → plus1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(plus, x), app(s, y)) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
plus1(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

plus1(s(x), y) → plus1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
plus1(x1, x2)  =  plus1(x1)
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
s1 > plus11

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(times, x), app(s, y)) → APP(app(times, x), y)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

times1(x, s(y)) → times1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(times, x), app(s, y)) → APP(app(times, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
times1(x1, x2)  =  times1(x2)
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
s1 > times11

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x2)
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
filter  =  filter
filter2  =  filter2
true  =  true
false  =  false
times  =  times
0  =  0
s  =  s
plus  =  plus
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(times, x), 0) → 0
app(app(times, x), app(s, y)) → app(app(plus, app(app(times, x), y)), x)
app(app(plus, x), 0) → x
app(app(plus, 0), x) → x
app(app(plus, x), app(s, y)) → app(s, app(app(plus, x), y))
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(times, x0), 0)
app(app(times, x0), app(s, x1))
app(app(plus, x0), 0)
app(app(plus, 0), x0)
app(app(plus, x0), app(s, x1))
app(app(plus, app(s, x0)), x1)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(23) TRUE