(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)
APP(app(eq, app(s, x)), app(s, y)) → APP(eq, x)
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(app(edge, x), y), app(app(union, i), h))
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(union, i)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i))
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(if_reach_1, app(app(eq, x), u)), x), y)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(if_reach_1, app(app(eq, x), u)), x)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(if_reach_1, app(app(eq, x), u))
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(eq, x), u)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(eq, x)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i))
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(if_reach_2, app(app(eq, y), v)), x), y)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(if_reach_2, app(app(eq, y), v)), x)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(if_reach_2, app(app(eq, y), v))
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(eq, y), v)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(eq, y)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, x), y), i)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, x), y)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, x)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(edge, u), v), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(or, app(app(app(app(reach, x), y), i), h))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, x), y), i)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, x), y)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, x)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, v), y), app(app(union, i), h)), empty)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, v), y), app(app(union, i), h))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, v), y)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, v)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(union, i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(union, i)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 38 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

union1(edge(x, y, i), h) → union1(i, h)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
union1(x1, x2)  =  union1(x1, x2)
edge(x1, x2, x3)  =  edge(x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[union12, edge2]

Status:
edge2: [2,1]
union12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

eq1(s(x), s(y)) → eq1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
eq1(x1, x2)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, v), y), app(app(union, i), h)), empty)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x2)
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
filter  =  filter
filter2  =  filter2
true  =  true
false  =  false
eq  =  eq
s  =  s
0  =  0
if_reach_1  =  if_reach_1
edge  =  edge
if_reach_2  =  if_reach_2
reach  =  reach
empty  =  empty
union  =  union
or  =  or
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
[false, eq] > APP1 > map > cons > filter2 > [app2, s, or]
[false, eq] > APP1 > filter > filter2 > [app2, s, or]
[false, eq] > reach > [edge, empty] > true > ifreach2 > [app2, s, or]
[false, eq] > reach > [edge, empty] > ifreach1 > ifreach2 > [app2, s, or]
[false, eq] > reach > [edge, empty] > union > [app2, s, or]
0 > true > ifreach2 > [app2, s, or]

Status:
APP1: [1]
eq: []
edge: []
or: []
union: []
true: []
empty: []
s: []
0: []
ifreach2: []
reach: []
filter: []
cons: []
map: []
ifreach1: []
false: []
app2: [2,1]
filter2: []
nil: []


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)

The TRS R consists of the following rules:

app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

The set Q consists of the following terms:

app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(22) TRUE