(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 37 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

app1(add(n, x), y) → app1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[app12, add2]

Status:
app12: [1,2]
add2: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

le1(s(x), s(y)) → le1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
le1(x1, x2)  =  le1(x1)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
le11: [1]
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

min1(add(n, add(m, x))) → if_min1(le(n, m), add(n, add(m, x)))
if_min1(true, add(n, add(m, x))) → min1(add(n, x))
if_min1(false, add(n, add(m, x))) → min1(add(m, x))

The a-transformed usable rules are

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)


The following pairs can be oriented strictly and are deleted.


APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
min1(x1)  =  min1(x1)
add(x1, x2)  =  add(x2)
if_min1(x1, x2)  =  x2
le(x1, x2)  =  le
true  =  true
false  =  false
0  =  0
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
0 > [true, false]
s1 > [min11, add1, le] > [true, false]

Status:
min11: multiset
add1: multiset
le: multiset
true: multiset
false: multiset
0: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented:

app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

eq1(s(x), s(y)) → eq1(x, y)

The a-transformed usable rules are
none


The following pairs can be oriented strictly and are deleted.


APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
eq1(x1, x2)  =  eq1(x1)
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
eq11: [1]
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04]. Here, we combined the reduction pair processor with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem.
The a-transformed P is

rm1(n, add(m, x)) → if_rm1(eq(n, m), n, add(m, x))
if_rm1(true, n, add(m, x)) → rm1(n, x)
if_rm1(false, n, add(m, x)) → rm1(n, x)

The a-transformed usable rules are

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)


The following pairs can be oriented strictly and are deleted.


APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
rm1(x1, x2)  =  rm1(x1, x2)
add(x1, x2)  =  add(x1, x2)
if_rm1(x1, x2, x3)  =  if_rm1(x2, x3)
eq(x1, x2)  =  eq(x1, x2)
true  =  true
false  =  false
0  =  0
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
add2 > [rm12, ifrm12, eq2, true, false]
0 > [rm12, ifrm12, eq2, true, false]
s1 > [rm12, ifrm12, eq2, true, false]

Status:
rm12: multiset
add2: multiset
ifrm12: multiset
eq2: multiset
true: multiset
false: multiset
0: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP'(x1, x2)  =  x2
app'(x1, x2)  =  app'(x1, x2)
map  =  map
add  =  add
filter  =  filter
filter2  =  filter2
true  =  true
false  =  false
eq  =  eq
0  =  0
s  =  s
le  =  le
app  =  app
nil  =  nil
min  =  min
if_min  =  if_min
rm  =  rm
if_rm  =  if_rm
minsort  =  minsort
if_minsort  =  if_minsort

Recursive path order with status [RPO].
Quasi-Precedence:
[add, true, false, s, ifminsort] > [app'2, map, filter, filter2, eq, le, app, nil, min, ifmin, rm, ifrm, minsort]
0 > [app'2, map, filter, filter2, eq, le, app, nil, min, ifmin, rm, ifrm, minsort]

Status:
app'2: multiset
map: multiset
add: multiset
filter: multiset
filter2: multiset
true: multiset
false: multiset
eq: multiset
0: multiset
s: multiset
le: multiset
app: multiset
nil: multiset
min: multiset
ifmin: multiset
rm: multiset
ifrm: multiset
minsort: multiset
ifminsort: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

(36) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(37) TRUE