(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 37 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
The TRS R consists of the following rules:
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.