(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)
DEL(x, cons(y, xs)) → EQ(x, y)
IF(false, x, y, xs) → DEL(x, xs)
EQ(s(x), s(y)) → EQ(x, y)
DOUBLELIST(cons(x, xs)) → DOUBLE(x)
DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))
DOUBLELIST(cons(x, xs)) → DEL(first(cons(x, xs)), cons(x, xs))
DOUBLELIST(cons(x, xs)) → FIRST(cons(x, xs))

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(false, x, y, xs) → DEL(x, xs)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3, x4)  =  IF(x4)
false  =  false
DEL(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)
eq(x1, x2)  =  x2
0  =  0
true  =  true
s(x1)  =  s

Lexicographic Path Order [LPO].
Precedence:
[IF1, cons1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DOUBLE(s(x)) → DOUBLE(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DOUBLE(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))

The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))

The set Q consists of the following terms:

double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.