0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDP
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
MINUS(s(x), s(y)) → MINUS(x, y)
MINUS(x, s(y)) → P(minus(x, y))
MINUS(x, s(y)) → MINUS(x, y)
DIV(s(x), s(y)) → DIV(minus(s(x), s(y)), s(y))
DIV(s(x), s(y)) → MINUS(s(x), s(y))
LOG(s(s(x)), s(s(y))) → LOG(div(minus(x, y), s(s(y))), s(s(y)))
LOG(s(s(x)), s(s(y))) → DIV(minus(x, y), s(s(y)))
LOG(s(s(x)), s(s(y))) → MINUS(x, y)
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
MINUS(x, s(y)) → MINUS(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
s1 > MINUS1
s1: multiset
MINUS1: [1]
MINUS(x, s(y)) → MINUS(x, y)
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(x, s(y)) → MINUS(x, y)
s1 > MINUS1
s1: multiset
MINUS1: [1]
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
DIV(s(x), s(y)) → DIV(minus(s(x), s(y)), s(y))
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))
LOG(s(s(x)), s(s(y))) → LOG(div(minus(x, y), s(s(y))), s(s(y)))
p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(x, s(y)) → p(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))