(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
L1(f(s(s(y)), f(z, w))) → F(s(0), f(y, f(s(z), w)))
L1(f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
L1(f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
F(x, f(s(s(y)), nil)) → F(y, f(s(0), nil))
F(x, f(s(s(y)), nil)) → F(s(0), nil)
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, f(s(s(y)), f(z, w))) → F(y, f(s(z), w))
F(x, f(s(s(y)), f(z, w))) → F(s(x), f(y, f(s(z), w)))
F(x, f(s(s(y)), f(z, w))) → F(s(z), w)
F(x, f(s(s(y)), nil)) → F(s(x), f(y, f(s(0), nil)))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L1(f(s(s(y)), f(z, w))) → L1(f(s(0), f(y, f(s(z), w))))
The TRS R consists of the following rules:
f(x, f(s(s(y)), f(z, w))) → f(s(x), f(y, f(s(z), w)))
L(f(s(s(y)), f(z, w))) → L(f(s(0), f(y, f(s(z), w))))
f(x, f(s(s(y)), nil)) → f(s(x), f(y, f(s(0), nil)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.