(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, x)
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, x)

The TRS R consists of the following rules:

f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, x)

The TRS R consists of the following rules:

f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, x)

The TRS R consists of the following rules:

f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.