(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(a, f(f(x, h(y)), a))
F(f(a, x), y) → F(f(x, h(y)), a)
F(f(a, x), y) → F(x, h(y))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(x, h(y))
F(f(a, x), y) → F(f(x, h(y)), a)

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(7) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule F(f(a, x), y) → F(x, h(y)) we obtained the following new rules [LPAR04]:

F(f(a, x0), h(z1)) → F(x0, h(h(z1)))
F(f(a, x0), a) → F(x0, h(a))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(f(x, h(y)), a)
F(f(a, x0), h(z1)) → F(x0, h(h(z1)))
F(f(a, x0), a) → F(x0, h(a))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(9) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule F(f(a, x), y) → F(x, h(y)) we obtained the following new rules [LPAR04]:

F(f(a, x0), h(z1)) → F(x0, h(h(z1)))
F(f(a, x0), a) → F(x0, h(a))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x), y) → F(f(x, h(y)), a)
F(f(a, x0), h(z1)) → F(x0, h(h(z1)))
F(f(a, x0), a) → F(x0, h(a))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(11) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule F(f(a, x), y) → F(f(x, h(y)), a) we obtained the following new rules [LPAR04]:

F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(h(z1))) → F(f(x0, h(h(h(z1)))), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), h(z1)) → F(x0, h(h(z1)))
F(f(a, x0), a) → F(x0, h(a))
F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(h(z1))) → F(f(x0, h(h(h(z1)))), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(13) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule F(f(a, x0), h(z1)) → F(x0, h(h(z1))) we obtained the following new rules [LPAR04]:

F(f(a, x0), h(h(z1))) → F(x0, h(h(h(z1))))
F(f(a, x0), h(a)) → F(x0, h(h(a)))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(x0, h(a))
F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(h(z1))) → F(f(x0, h(h(h(z1)))), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(h(z1))) → F(x0, h(h(h(z1))))
F(f(a, x0), h(a)) → F(x0, h(h(a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(15) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule F(f(a, x0), h(h(z1))) → F(f(x0, h(h(h(z1)))), a) we obtained the following new rules [LPAR04]:

F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(x0, h(a))
F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(h(z1))) → F(x0, h(h(h(z1))))
F(f(a, x0), h(a)) → F(x0, h(h(a)))
F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(17) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule F(f(a, x0), a) → F(x0, h(a)) we obtained the following new rules [LPAR04]:

F(f(a, f(a, y_0)), a) → F(f(a, y_0), h(a))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(h(z1))) → F(x0, h(h(h(z1))))
F(f(a, x0), h(a)) → F(x0, h(h(a)))
F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)
F(f(a, f(a, y_0)), a) → F(f(a, y_0), h(a))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(19) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule F(f(a, x0), h(h(z1))) → F(x0, h(h(h(z1)))) we obtained the following new rules [LPAR04]:

F(f(a, f(a, y_0)), h(h(x1))) → F(f(a, y_0), h(h(h(x1))))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(a)) → F(x0, h(h(a)))
F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)
F(f(a, f(a, y_0)), a) → F(f(a, y_0), h(a))
F(f(a, f(a, y_0)), h(h(x1))) → F(f(a, y_0), h(h(h(x1))))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(21) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule F(f(a, x0), h(a)) → F(x0, h(h(a))) we obtained the following new rules [LPAR04]:

F(f(a, f(a, y_0)), h(a)) → F(f(a, y_0), h(h(a)))
F(f(a, f(a, f(a, y_0))), h(a)) → F(f(a, f(a, y_0)), h(h(a)))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)
F(f(a, f(a, y_0)), a) → F(f(a, y_0), h(a))
F(f(a, f(a, y_0)), h(h(x1))) → F(f(a, y_0), h(h(h(x1))))
F(f(a, f(a, y_0)), h(a)) → F(f(a, y_0), h(h(a)))
F(f(a, f(a, f(a, y_0))), h(a)) → F(f(a, f(a, y_0)), h(h(a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

The set Q consists of the following terms:

f(f(a, x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(23) MNOCProof (EQUIVALENT transformation)

We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(f(a, x0), a) → F(f(x0, h(a)), a)
F(f(a, x0), h(a)) → F(f(x0, h(h(a))), a)
F(f(a, x0), h(h(h(z1)))) → F(f(x0, h(h(h(h(z1))))), a)
F(f(a, x0), h(h(a))) → F(f(x0, h(h(h(a)))), a)
F(f(a, f(a, y_0)), a) → F(f(a, y_0), h(a))
F(f(a, f(a, y_0)), h(h(x1))) → F(f(a, y_0), h(h(h(x1))))
F(f(a, f(a, y_0)), h(a)) → F(f(a, y_0), h(h(a)))
F(f(a, f(a, f(a, y_0))), h(a)) → F(f(a, f(a, y_0)), h(h(a)))

The TRS R consists of the following rules:

f(f(a, x), y) → f(a, f(f(x, h(y)), a))

Q is empty.
We have to consider all (P,Q,R)-chains.

(25) SemLabProof (SOUND transformation)

We found the following model for the rules of the TRS R. Interpretation over the domain with elements from 0 to 1.a: 1
f: 0
h: 0
F: 0
By semantic labelling [SEMLAB] we obtain the following labelled TRS.

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-0(a., x0), a.) → F.0-1(f.0-0(x0, h.1(a.)), a.)
F.0-1(f.1-1(a., x0), a.) → F.0-1(f.1-0(x0, h.1(a.)), a.)
F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) → F.0-0(f.1-0(a., y_0), h.1(a.))
F.0-1(f.1-0(a., f.1-1(a., y_0)), a.) → F.0-0(f.1-1(a., y_0), h.1(a.))
F.0-0(f.1-0(a., x0), h.1(a.)) → F.0-1(f.0-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-1(a., x0), h.1(a.)) → F.0-1(f.1-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., x0), h.0(h.1(a.))) → F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-1(a., x0), h.0(h.1(a.))) → F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) → F.0-0(f.1-0(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) → F.0-0(f.1-1(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1))))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.))
f.0-1(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.))
f.0-0(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.))
f.0-1(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-0(a., x0), a.) → F.0-1(f.0-0(x0, h.1(a.)), a.)
F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) → F.0-0(f.1-0(a., y_0), h.1(a.))
F.0-0(f.1-0(a., x0), h.1(a.)) → F.0-1(f.0-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) → F.0-0(f.1-0(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., x0), h.0(h.1(a.))) → F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) → F.0-0(f.1-1(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-1(a., x0), h.0(h.1(a.))) → F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.))
f.0-1(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.))
f.0-0(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.))
f.0-1(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(29) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-1(a., x0), h.0(h.1(a.))) → F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.)

Strictly oriented rules of the TRS R:

f.0-0(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.))
f.0-1(f.1-1(a., x), y) → f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.))

Used ordering: Polynomial interpretation [POLO]:

POL(F.0-0(x1, x2)) = x1 + x2   
POL(F.0-1(x1, x2)) = x1 + x2   
POL(a.) = 0   
POL(f.0-0(x1, x2)) = x1 + x2   
POL(f.0-1(x1, x2)) = x1 + x2   
POL(f.1-0(x1, x2)) = x1 + x2   
POL(f.1-1(x1, x2)) = 1 + x1 + x2   
POL(h.0(x1)) = x1   
POL(h.1(x1)) = x1   

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-0(a., x0), a.) → F.0-1(f.0-0(x0, h.1(a.)), a.)
F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) → F.0-0(f.1-0(a., y_0), h.1(a.))
F.0-0(f.1-0(a., x0), h.1(a.)) → F.0-1(f.0-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) → F.0-0(f.1-0(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., x0), h.0(h.1(a.))) → F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) → F.0-0(f.1-1(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.))
f.0-1(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(31) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F.0-1(f.1-0(a., x0), a.) → F.0-1(f.0-0(x0, h.1(a.)), a.)
F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) → F.0-0(f.1-0(a., y_0), h.1(a.))
F.0-0(f.1-0(a., x0), h.1(a.)) → F.0-1(f.0-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) → F.0-0(f.1-0(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., x0), h.0(h.1(a.))) → F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.)))

The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.))
f.0-1(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(33) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F.0-1(f.1-0(a., x0), a.) → F.0-1(f.0-0(x0, h.1(a.)), a.)
F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) → F.0-0(f.1-0(a., y_0), h.1(a.))
F.0-0(f.1-0(a., x0), h.1(a.)) → F.0-1(f.0-0(x0, h.0(h.1(a.))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) → F.0-0(f.1-0(a., y_0), h.0(h.1(a.)))
F.0-0(f.1-0(a., x0), h.0(h.1(a.))) → F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) → F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1))))
F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) → F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.)
F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.)))
F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) → F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.)))


Used ordering: Polynomial interpretation [POLO]:

POL(F.0-0(x1, x2)) = 1 + x1 + x2   
POL(F.0-1(x1, x2)) = 1 + x1 + x2   
POL(a.) = 0   
POL(f.0-0(x1, x2)) = x1 + x2   
POL(f.0-1(x1, x2)) = x1 + x2   
POL(f.1-0(x1, x2)) = 1 + x1 + x2   
POL(f.1-1(x1, x2)) = x1 + x2   
POL(h.0(x1)) = x1   
POL(h.1(x1)) = x1   

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f.0-0(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.))
f.0-1(f.1-0(a., x), y) → f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.))

The set Q consists of the following terms:

f.0-0(f.1-0(a., x0), x1)
f.0-1(f.1-0(a., x0), x1)
f.0-0(f.1-1(a., x0), x1)
f.0-1(f.1-1(a., x0), x1)

We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE