(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → P(s(x))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))
TIMES(s(x), y) → TIMES(p(s(x)), y)
TIMES(s(x), y) → P(s(x))
EXP(x, s(y)) → TIMES(x, exp(x, y))
EXP(x, s(y)) → EXP(x, y)
P(s(s(x))) → P(s(x))
TOWER(x, y) → TOWERITER(x, y, s(0))
TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))
TOWERITER(s(x), y, z) → P(s(x))
TOWERITER(s(x), y, z) → EXP(y, z)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 7 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


P(s(s(x))) → P(s(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EXP(x, s(y)) → EXP(x, y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EXP(x, s(y)) → EXP(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
s1 > EXP2

Status:
s1: [1]
EXP2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.