(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
APP(add(n, x), y) → APP(x, y)
LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
LOW(n, add(m, x)) → LE(m, n)
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
HIGH(n, add(m, x)) → LE(m, n)
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
QUICKSORT(x) → IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
QUICKSORT(x) → ISEMPTY(x)
QUICKSORT(x) → LOW(head(x), tail(x))
QUICKSORT(x) → HEAD(x)
QUICKSORT(x) → TAIL(x)
QUICKSORT(x) → HIGH(head(x), tail(x))
IF_QS(false, x, n, y) → APP(quicksort(x), add(n, quicksort(y)))
IF_QS(false, x, n, y) → QUICKSORT(x)
IF_QS(false, x, n, y) → QUICKSORT(y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 8 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(add(n, x), y) → APP(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
[APP2, add2]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HIGH(x1, x2)  =  HIGH(x2)
add(x1, x2)  =  add(x2)
IF_HIGH(x1, x2, x3)  =  IF_HIGH(x1, x3)
le(x1, x2)  =  le
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Lexicographic Path Order [LPO].
Precedence:
[HIGH1, add1, IFHIGH2] > le > true
[HIGH1, add1, IFHIGH2] > le > false


The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOW(x1, x2)  =  x2
add(x1, x2)  =  add(x2)
IF_LOW(x1, x2, x3)  =  x3
le(x1, x2)  =  x2
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Lexicographic Path Order [LPO].
Precedence:
true > add1
false > add1
0 > add1
s > add1


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(x) → IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
IF_QS(false, x, n, y) → QUICKSORT(x)
IF_QS(false, x, n, y) → QUICKSORT(y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
head(add(n, x)) → n
tail(add(n, x)) → x
isempty(nil) → true
isempty(add(n, x)) → false
quicksort(x) → if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x)))
if_qs(true, x, n, y) → nil
if_qs(false, x, n, y) → app(quicksort(x), add(n, quicksort(y)))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
head(add(x0, x1))
tail(add(x0, x1))
isempty(nil)
isempty(add(x0, x1))
quicksort(x0)
if_qs(true, x0, x1, x2)
if_qs(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.