0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDP
↳14 QDP
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → P(s(x))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))
TIMES(s(x), y) → TIMES(p(s(x)), y)
TIMES(s(x), y) → P(s(x))
P(s(s(x))) → P(s(x))
FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))
FAC(s(x), y) → P(s(x))
FAC(s(x), y) → TIMES(s(x), y)
FACTORIAL(x) → FAC(x, s(0))
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
P(s(s(x))) → P(s(x))
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(s(s(x))) → P(s(x))
trivial
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
PLUS(s(x), y) → PLUS(p(s(x)), y)
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
TIMES(s(x), y) → TIMES(p(s(x)), y)
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)
FAC(s(x), y) → FAC(p(s(x)), times(s(x), y))
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
p(s(0))
p(s(s(x0)))
fac(0, x0)
fac(s(x0), x1)
factorial(x0)