(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), 0) → GE(x, 0)
GE(0, s(s(x))) → GE(0, s(x))
GE(s(x), s(y)) → GE(x, y)
MINUS(0, s(x)) → MINUS(0, x)
MINUS(s(x), 0) → MINUS(x, 0)
MINUS(s(x), s(y)) → MINUS(x, y)
PLUS(0, s(x)) → PLUS(0, x)
PLUS(s(x), y) → PLUS(x, y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
DIV(x, y) → GE(y, s(0))
IFY(true, x, y) → IF(ge(x, y), x, y)
IFY(true, x, y) → GE(x, y)
IF(true, x, y) → DIV(minus(x, y), y)
IF(true, x, y) → MINUS(x, y)
DIV(plus(x, y), z) → PLUS(div(x, z), div(y, z))
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(0, s(x)) → PLUS(0, x)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), 0) → MINUS(x, 0)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(0, s(x)) → MINUS(0, x)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(0, s(s(x))) → GE(0, s(x))

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), 0) → GE(x, 0)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIV(plus(x, y), z) → DIV(x, z)
DIV(plus(x, y), z) → DIV(y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
DIV(x1, x2)  =  x1
IFY(x1, x2, x3)  =  x2
ge(x1, x2)  =  ge
s(x1)  =  s
0  =  0
true  =  true
IF(x1, x2, x3)  =  IF
minus(x1, x2)  =  minus
plus(x1, x2)  =  plus(x1, x2)
false  =  false
div(x1, x2)  =  div(x1, x2)
ify(x1, x2, x3)  =  ify(x2)
divByZeroError  =  divByZeroError
if(x1, x2, x3)  =  if(x1, x2)

Recursive Path Order [RPO].
Precedence:
[div2, ify1] > plus2 > [ge, s, 0, true, IF, minus, false]
[div2, ify1] > divByZeroError > [ge, s, 0, true, IF, minus, false]
[div2, ify1] > if2 > [ge, s, 0, true, IF, minus, false]


The following usable rules [FROCOS05] were oriented:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)

The TRS R consists of the following rules:

ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
div(plus(x, y), z) → plus(div(x, z), div(y, z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.