(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), 0) → GE(x, 0)
GE(0, s(s(x))) → GE(0, s(x))
GE(s(x), s(y)) → GE(x, y)
MINUS(0, s(x)) → MINUS(0, x)
MINUS(s(x), 0) → MINUS(x, 0)
MINUS(s(x), s(y)) → MINUS(x, y)
PLUS(0, s(x)) → PLUS(0, x)
PLUS(s(x), y) → PLUS(x, y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
DIV(x, y) → GE(y, s(0))
IFY(true, x, y) → IF(ge(x, y), x, y)
IFY(true, x, y) → GE(x, y)
IF(true, x, y) → DIV(minus(x, y), y)
IF(true, x, y) → MINUS(x, y)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(0, s(x)) → PLUS(0, x)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), 0) → MINUS(x, 0)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(0, s(x)) → MINUS(0, x)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(0, s(s(x))) → GE(0, s(x))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), 0) → GE(x, 0)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → ge(x, 0)
ge(0, s(0)) → false
ge(0, s(s(x))) → ge(0, s(x))
ge(s(x), s(y)) → ge(x, y)
minus(0, 0) → 0
minus(0, s(x)) → minus(0, x)
minus(s(x), 0) → s(minus(x, 0))
minus(s(x), s(y)) → minus(x, y)
plus(0, 0) → 0
plus(0, s(x)) → s(plus(0, x))
plus(s(x), y) → s(plus(x, y))
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(0))
ge(0, s(s(x0)))
ge(s(x0), s(x1))
minus(0, 0)
minus(0, s(x0))
minus(s(x0), 0)
minus(s(x0), s(x1))
plus(0, 0)
plus(0, s(x0))
plus(s(x0), x1)
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.