(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(plus(N, 0)) → MARK(N)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
ACTIVE(plus(N, s(M))) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → PLUS(N, M)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
trivial

The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
and(x1, x2)  =  x2
ACTIVE(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  x1
0  =  0
tt  =  tt

Recursive path order with status [RPO].
Precedence:
plus2 > s1

Status:
trivial

The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(s(X)) → ACTIVE(s(mark(X)))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(14) TRUE