(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

The set Q consists of the following terms:

U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, M, N) → U121(tt, activate(M), activate(N))
U111(tt, M, N) → ACTIVATE(M)
U111(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → PLUS(activate(N), activate(M))
U121(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U111(tt, M, N)

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

The set Q consists of the following terms:

U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

The set Q consists of the following terms:

U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)

We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, M, N) → PLUS(activate(N), activate(M))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2)
tt  =  tt
PLUS(x1, x2)  =  x2
activate(x1)  =  x1
s(x1)  =  s(x1)
U111(x1, x2, x3)  =  U111(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [U12^11, s1, U11^11]

Status:
U11^11: multiset
tt: multiset
U12^11: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented:

activate(X) → X

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

The set Q consists of the following terms:

U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)

We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(10) TRUE