0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 DependencyGraphProof (⇔)
↳10 TRUE
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)
U111(tt, M, N) → U121(tt, activate(M), activate(N))
U111(tt, M, N) → ACTIVATE(M)
U111(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → PLUS(activate(N), activate(M))
U121(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U111(tt, M, N)
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)
U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
s1 > [U12^12, tt, U11^12]
U12^12: [1,2]
tt: []
s1: [1]
U11^12: [1,2]
activate(X) → X
U111(tt, M, N) → U121(tt, activate(M), activate(N))
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
U11(tt, x0, x1)
U12(tt, x0, x1)
plus(x0, 0)
plus(x0, s(x1))
activate(x0)