(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U16(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U23(tt)) → MARK(tt)
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt)) → MARK(tt)
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U52(tt, N)) → MARK(N)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(U12(X1, X2, X3)) → U121(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
MARK(U13(X1, X2, X3)) → U131(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
MARK(U14(X1, X2, X3)) → U141(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
MARK(U15(X1, X2)) → U151(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
MARK(U16(X)) → U161(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → U221(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
MARK(U23(X)) → U231(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → U411(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
MARK(U52(X1, X2)) → U521(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
MARK(U62(X1, X2, X3)) → U621(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U63(X1, X2, X3)) → U631(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → U641(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U151(X1, mark(X2)) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U161(mark(X)) → U161(X)
U161(active(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(X1, mark(X2)) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
U231(mark(X)) → U231(X)
U231(active(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X)) → U411(X)
U411(active(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(X1, mark(X2)) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 23 SCCs with 66 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > PLUS1

Status:
PLUS1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > PLUS2

Status:
PLUS2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > S1

Status:
S1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U64^12
active1 > U64^12

Status:
U64^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U63^12
active1 > U63^12

Status:
U63^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(34) TRUE

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U62^12
active1 > U62^12

Status:
U62^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U61^12
active1 > U61^12

Status:
U61^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2)) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U52^11

Status:
U52^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U52^12

Status:
U52^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2)) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U51^11

Status:
U51^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U51^12

Status:
U51^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U41^11

Status:
U41^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U32^11

Status:
U32^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(80) TRUE

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U31^11

Status:
U31^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U31^12

Status:
U31^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(active(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(active(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U23^11

Status:
U23^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2)) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U22^11

Status:
U22^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U22^12

Status:
U22^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(105) TRUE

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U21^11

Status:
U21^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U21^12

Status:
U21^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(114) TRUE

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(active(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(active(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U16^11

Status:
U16^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > ISNAT1

Status:
ISNAT1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(128) TRUE

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(X1, mark(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, mark(X2)) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U15^11

Status:
U15^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(active(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U15^12

Status:
U15^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(137) TRUE

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U14^12
active1 > U14^12

Status:
U14^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(144) TRUE

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U13^12
active1 > U13^12

Status:
U13^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(149) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(151) TRUE

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > ISNATKIND1

Status:
ISNATKIND1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(158) TRUE

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U12^12
active1 > U12^12

Status:
U12^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(163) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(165) TRUE

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > U11^12
active1 > U11^12

Status:
U11^12: multiset
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(172) TRUE

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
ACTIVE(U52(tt, N)) → MARK(N)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.