(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U16(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U23(tt)) → MARK(tt)
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt)) → MARK(tt)
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U52(tt, N)) → MARK(N)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(U12(X1, X2, X3)) → U121(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
MARK(U13(X1, X2, X3)) → U131(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
MARK(U14(X1, X2, X3)) → U141(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
MARK(U15(X1, X2)) → U151(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
MARK(U16(X)) → U161(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → U221(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
MARK(U23(X)) → U231(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → U411(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
MARK(U52(X1, X2)) → U521(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
MARK(U62(X1, X2, X3)) → U621(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U63(X1, X2, X3)) → U631(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → U641(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U151(X1, mark(X2)) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U161(mark(X)) → U161(X)
U161(active(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(X1, mark(X2)) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
U231(mark(X)) → U231(X)
U231(active(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X)) → U411(X)
U411(active(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(X1, mark(X2)) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 23 SCCs with 66 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[PLUS1, active1]

Status:
PLUS1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U64^13

Status:
U64^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, X2, active(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U64^13, active1]

Status:
U64^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U63^13

Status:
U63^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, X2, active(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U63^13, active1]

Status:
U63^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U62^13

Status:
U62^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, X2, active(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U62^13, active1]

Status:
U62^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(53) TRUE

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U61^13

Status:
U61^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, active(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U61^13, active1]

Status:
U61^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(64) TRUE

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2)) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U52^11, active1]

Status:
U52^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2)) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U51^11, active1]

Status:
U51^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(80) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(82) TRUE

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U31^11, active1]

Status:
U31^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(105) TRUE

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(active(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(active(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(112) TRUE

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2)) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U22^11, active1]

Status:
U22^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U21^11, active1]

Status:
U21^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(128) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(130) TRUE

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(active(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(active(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(137) TRUE

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(144) TRUE

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(X1, mark(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, mark(X2)) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U15^11, active1]

Status:
U15^11: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(active(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(151) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(153) TRUE

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(158) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U14^13

Status:
U14^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(160) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, X2, active(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U14^13, active1]

Status:
U14^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(162) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(164) TRUE

(165) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(168) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(169) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(170) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U13^13

Status:
U13^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(171) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(172) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, X2, active(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U13^13, active1]

Status:
U13^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(173) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(175) TRUE

(176) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(177) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(178) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(179) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(180) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(182) TRUE

(183) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(184) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(185) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(186) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(188) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U12^13

Status:
U12^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(190) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, active(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U12^13, active1]

Status:
U12^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(191) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(193) TRUE

(194) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(195) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(196) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(197) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(198) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(199) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U11^13

Status:
U11^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(200) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(201) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11^13, active1]

Status:
U11^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(202) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(204) TRUE

(205) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
ACTIVE(U52(tt, N)) → MARK(N)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(206) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U16(X)) → ACTIVE(U16(mark(X)))
MARK(U23(X)) → ACTIVE(U23(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark(x1)
tt  =  tt
U12(x1, x2, x3)  =  U12
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
isNat(x1)  =  isNat
U16(x1)  =  U16
U21(x1, x2)  =  U21
U22(x1, x2)  =  U22
U23(x1)  =  U23
U31(x1, x2)  =  U31
U32(x1)  =  U32
U51(x1, x2)  =  U51
U52(x1, x2)  =  U52
U61(x1, x2, x3)  =  U61
U62(x1, x2, x3)  =  U62
U63(x1, x2, x3)  =  U63
U64(x1, x2, x3)  =  U64
U41(x1)  =  U41
s(x1)  =  s
plus(x1, x2)  =  plus
0  =  0
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > mark1 > [MARK, U11, U12, isNatKind, U13, U14, U15, isNat, U21, U22, U31, U32, U51, U52, U61, U62, U63, U64, U41, s, plus] > tt > [U16, U23]

Status:
MARK: []
U11: []
mark1: [1]
tt: []
U12: []
isNatKind: []
U13: []
U14: []
U15: []
isNat: []
U16: []
U21: []
U22: []
U23: []
U31: []
U32: []
U51: []
U52: []
U61: []
U62: []
U63: []
U64: []
U41: []
s: []
plus: []
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)

(207) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
ACTIVE(U52(tt, N)) → MARK(N)
MARK(U22(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(208) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
ACTIVE(U52(tt, N)) → MARK(N)
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → MARK(X1)
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U64(x1, x2, x3)  =  U64(x1, x2, x3)
U41(x1)  =  x1
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
0  =  0
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK1, ACTIVE1] > [tt, isNatKind, isNat, U613, U623, U633, U643, plus2] > U512 > [U522, s1]
0 > [tt, isNatKind, isNat, U613, U623, U633, U643, plus2] > U512 > [U522, s1]

Status:
MARK1: [1]
ACTIVE1: [1]
tt: []
isNatKind: []
isNat: []
U512: [2,1]
U522: [2,1]
U613: [2,3,1]
U623: [2,3,1]
U633: [2,3,1]
U643: [2,3,1]
s1: [1]
plus2: [2,1]
0: []


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
mark(isNatKind(X)) → active(isNatKind(X))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
mark(isNat(X)) → active(isNat(X))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
mark(U16(X)) → active(U16(mark(X)))
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
active(U52(tt, N)) → mark(N)
mark(U23(X)) → active(U23(mark(X)))
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
mark(U32(X)) → active(U32(mark(X)))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
mark(U41(X)) → active(U41(mark(X)))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
active(plus(N, 0)) → mark(U51(isNat(N), N))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(0) → active(0)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
active(U16(tt)) → mark(tt)
active(U23(tt)) → mark(tt)
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(isNat(0)) → mark(tt)
active(isNatKind(0)) → mark(tt)

(209) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(210) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51
plus(x1, x2)  =  x1
U52(x1, x2)  =  U52
s(x1)  =  s(x1)
active(x1)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > s1 > [ACTIVE, isNatKind, isNat, U61, U51, U52]

Status:
ACTIVE: []
tt: []
isNatKind: []
isNat: []
U61: []
U51: []
U52: []
s1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(211) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(212) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51
plus(x1, x2)  =  plus(x1, x2)
U52(x1, x2)  =  U52
s(x1)  =  s(x1)
active(x1)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > plus2 > [ACTIVE, isNatKind, isNat, U61, U51, U52]
tt > s1 > [ACTIVE, isNatKind, isNat, U61, U51, U52]
0 > [ACTIVE, isNatKind, isNat, U61, U51, U52]

Status:
ACTIVE: []
tt: []
isNatKind: []
isNat: []
U61: []
U51: []
plus2: [2,1]
U52: []
s1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(214) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U61(x1, x2, x3)  =  U61(x3)
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51
plus(x1, x2)  =  plus(x1, x2)
U52(x1, x2)  =  U52
s(x1)  =  s(x1)
active(x1)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [ACTIVE, isNatKind, isNat, U611, U51, U52, s1]

Status:
ACTIVE: []
tt: []
isNatKind: []
isNat: []
U611: [1]
U51: []
plus2: [2,1]
U52: []
s1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
U12(x1, x2, x3)  =  U12
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
isNat(x1)  =  isNat
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21
U22(x1, x2)  =  U22
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31
U32(x1)  =  U32
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  U62
U63(x1, x2, x3)  =  U63
U64(x1, x2, x3)  =  U64
U41(x1)  =  U41
U51(x1, x2)  =  U51
plus(x1, x2)  =  plus(x1, x2)
U52(x1, x2)  =  U52
s(x1)  =  s(x1)
active(x1)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U62, U63, U64, U41, U51, U52]
[tt, 0] > s1 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U62, U63, U64, U41, U51, U52]

Status:
MARK: []
U11: []
mark: []
tt: []
U12: []
isNatKind: []
U13: []
U14: []
U15: []
isNat: []
U161: [1]
U21: []
U22: []
U231: [1]
U31: []
U32: []
U62: []
U63: []
U64: []
U41: []
U51: []
plus2: [2,1]
U52: []
s1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)
U51(X1, mark(X2)) → U51(X1, X2)
U51(mark(X1), X2) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(218) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark(x1)
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U62(x1, x2, x3)  =  U62(x3)
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51
plus(x1, x2)  =  plus(x1, x2)
U52(x1, x2)  =  U52
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U61(x1, x2, x3)  =  x2
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [ACTIVE, mark1, isNatKind, isNat, U621, U51, U52, active1]
[tt, 0] > s1 > [ACTIVE, mark1, isNatKind, isNat, U621, U51, U52, active1]

Status:
ACTIVE: []
mark1: [1]
tt: []
isNatKind: []
isNat: []
U621: [1]
U51: []
plus2: [2,1]
U52: []
s1: [1]
active1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(219) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(220) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U62(x1, x2, x3)  =  x2
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51(x1)
plus(x1, x2)  =  plus(x1, x2)
U52(x1, x2)  =  U52(x1)
s(x1)  =  s(x1)
active(x1)  =  x1
U61(x1, x2, x3)  =  x2
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, plus2, 0] > s1 > [ACTIVE, isNatKind, isNat, U511, U521]

Status:
ACTIVE: []
tt: []
isNatKind: []
isNat: []
U511: [1]
plus2: [2,1]
U521: [1]
s1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(222) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
U12(x1, x2, x3)  =  U12
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
isNat(x1)  =  isNat
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21
U22(x1, x2)  =  U22
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31
U32(x1)  =  U32
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  U63
U64(x1, x2, x3)  =  U64
U41(x1)  =  U41
plus(x1, x2)  =  plus(x1, x2)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x2)
U61(x1, x2, x3)  =  x2
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U63, U64, U41, active1, U512, U521]
[tt, 0] > s1 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U63, U64, U41, active1, U512, U521]

Status:
MARK: []
U11: []
mark: []
tt: []
U12: []
isNatKind: []
U13: []
U14: []
U15: []
isNat: []
U161: [1]
U21: []
U22: []
U231: [1]
U31: []
U32: []
U63: []
U64: []
U41: []
plus2: [2,1]
s1: [1]
active1: [1]
U512: [2,1]
U521: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(223) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(224) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark(x1)
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U63(x1, x2, x3)  =  U63(x3)
U64(x1, x2, x3)  =  x1
U41(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
s(x1)  =  x1
active(x1)  =  active(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [ACTIVE, mark1, isNatKind, isNat, U631, active1, U512, U52]

Status:
ACTIVE: []
mark1: [1]
tt: []
isNatKind: []
isNat: []
U631: [1]
plus2: [2,1]
active1: [1]
U512: [2,1]
U52: []
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(225) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(226) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
U12(x1, x2, x3)  =  U12
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
isNat(x1)  =  isNat
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21
U22(x1, x2)  =  U22
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31
U32(x1)  =  U32
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  U64
U41(x1)  =  U41
plus(x1, x2)  =  plus(x1, x2)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U64, U41, active1, U512, U52]
[tt, 0] > s1 > [MARK, U11, mark, U12, isNatKind, U13, U14, U15, isNat, U161, U21, U22, U231, U31, U32, U64, U41, active1, U512, U52]

Status:
MARK: []
U11: []
mark: []
tt: []
U12: []
isNatKind: []
U13: []
U14: []
U15: []
isNat: []
U161: [1]
U21: []
U22: []
U231: [1]
U31: []
U32: []
U64: []
U41: []
plus2: [2,1]
s1: [1]
active1: [1]
U512: [2,1]
U52: []
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(228) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
isNat(x1)  =  isNat
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
s(x1)  =  s(x1)
U64(x1, x2, x3)  =  U64(x3)
active(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > plus2 > [ACTIVE, isNatKind, isNat, U641, U512, U52]
[tt, 0] > s1 > [ACTIVE, isNatKind, isNat, U641, U512, U52]

Status:
ACTIVE: []
tt: []
isNatKind: []
isNat: []
plus2: [2,1]
s1: [1]
U641: [1]
U512: [2,1]
U52: []
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U16(active(X)) → U16(X)
U16(mark(X)) → U16(X)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(active(X)) → U23(X)
U23(mark(X)) → U23(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(229) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(230) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U41(X)) → ACTIVE(U41(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
U12(x1, x2, x3)  =  U12
isNatKind(x1)  =  isNatKind
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
isNat(x1)  =  isNat
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21
U22(x1, x2)  =  U22
U23(x1)  =  x1
U31(x1, x2)  =  U31
U32(x1)  =  U32
U41(x1)  =  U41
plus(x1, x2)  =  plus
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U51(x1, x2)  =  U51(x1)
U52(x1, x2)  =  U52
U61(x1, x2, x3)  =  x3
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x2
U64(x1, x2, x3)  =  x2
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > plus > [MARK, U11, U12, isNatKind, U13, U14, U15, isNat, U21, U22, U31] > [mark, U41] > U161 > [U32, active1, U511, 0]
tt > plus > [MARK, U11, U12, isNatKind, U13, U14, U15, isNat, U21, U22, U31] > [mark, U41] > s1 > [U32, active1, U511, 0]
tt > plus > [MARK, U11, U12, isNatKind, U13, U14, U15, isNat, U21, U22, U31] > [mark, U41] > U52 > [U32, active1, U511, 0]

Status:
MARK: []
U11: []
mark: []
tt: []
U12: []
isNatKind: []
U13: []
U14: []
U15: []
isNat: []
U161: [1]
U21: []
U22: []
U31: []
U32: []
U41: []
plus: []
s1: [1]
active1: [1]
U511: [1]
U52: []
0: []


The following usable rules [FROCOS05] were oriented:

U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U15(X1, mark(X2)) → U15(X1, X2)
U15(mark(X1), X2) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(active(X)) → U41(X)
U41(mark(X)) → U41(X)

(231) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.