(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U16(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U23(tt)) → MARK(tt)
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt)) → MARK(tt)
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U52(tt, N)) → MARK(N)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(U12(X1, X2, X3)) → U121(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
MARK(U13(X1, X2, X3)) → U131(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
MARK(U14(X1, X2, X3)) → U141(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
MARK(U15(X1, X2)) → U151(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
MARK(U16(X)) → U161(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → U221(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
MARK(U23(X)) → U231(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → U411(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
MARK(U52(X1, X2)) → U521(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
MARK(U62(X1, X2, X3)) → U621(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U63(X1, X2, X3)) → U631(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → U641(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U151(X1, mark(X2)) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U161(mark(X)) → U161(X)
U161(active(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(X1, mark(X2)) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
U231(mark(X)) → U231(X)
U231(active(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X)) → U411(X)
U411(active(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(X1, mark(X2)) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 23 SCCs with 66 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PLUS1

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PLUS2

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > PLUS1

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > PLUS1

The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > S1

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > S1

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, mark(X2), X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(active(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, active(X2), X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, X2, active(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, mark(X2), X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(active(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U63^11

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, active(X2), X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U63^11

The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, X2, active(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U63^11

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, mark(X2), X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(active(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U62^11

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, active(X2), X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U62^11

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, X2, active(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U62^11

The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, active(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(74) TRUE

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U52^12

The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, active(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U51^12

The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, active(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  U411(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > U41^11

The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U41^11

The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > U32^11

The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U32^11

The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(110) TRUE

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U31^12

The following usable rules [FROCOS05] were oriented: none

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(active(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(active(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  U231(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > U23^11

The following usable rules [FROCOS05] were oriented: none

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U23^11

The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(128) TRUE

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U22^11

The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U22^12

The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U22^11

The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, active(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U22^11

The following usable rules [FROCOS05] were oriented: none

(137) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(139) TRUE

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U21^12

The following usable rules [FROCOS05] were oriented: none

(144) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(145) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(148) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(150) TRUE

(151) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(active(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(active(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  U161(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > U16^11

The following usable rules [FROCOS05] were oriented: none

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(154) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U16^11

The following usable rules [FROCOS05] were oriented: none

(155) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(157) TRUE

(158) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > ISNAT1

The following usable rules [FROCOS05] were oriented: none

(160) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > ISNAT1

The following usable rules [FROCOS05] were oriented: none

(162) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(164) TRUE

(165) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(X1, mark(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, mark(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U15^11

The following usable rules [FROCOS05] were oriented: none

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(168) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U15^12

The following usable rules [FROCOS05] were oriented: none

(169) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(170) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(active(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U15^11

The following usable rules [FROCOS05] were oriented: none

(171) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(172) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, active(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U15^11

The following usable rules [FROCOS05] were oriented: none

(173) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(175) TRUE

(176) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(177) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(178) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(179) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, mark(X2), X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(active(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U14^11

The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, active(X2), X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U14^11

The following usable rules [FROCOS05] were oriented: none

(184) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, X2, active(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U14^11

The following usable rules [FROCOS05] were oriented: none

(186) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(187) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(188) TRUE

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(190) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, mark(X2), X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(active(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U13^11

The following usable rules [FROCOS05] were oriented: none

(195) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, active(X2), X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U13^11

The following usable rules [FROCOS05] were oriented: none

(197) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(198) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, X2, active(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U13^11

The following usable rules [FROCOS05] were oriented: none

(199) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(200) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(201) TRUE

(202) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > ISNATKIND1

The following usable rules [FROCOS05] were oriented: none

(204) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > ISNATKIND1

The following usable rules [FROCOS05] were oriented: none

(206) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(207) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(208) TRUE

(209) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(210) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(211) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(212) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(214) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, active(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(218) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, active(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(219) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(220) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(221) TRUE

(222) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(223) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(224) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(225) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(226) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(227) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(228) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(229) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, active(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(230) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(231) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(232) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(233) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(234) TRUE

(235) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
ACTIVE(U52(tt, N)) → MARK(N)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.