(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U16(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U23(tt)) → MARK(tt)
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt)) → MARK(tt)
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U52(tt, N)) → MARK(N)
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(U12(X1, X2, X3)) → U121(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
MARK(U13(X1, X2, X3)) → U131(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
MARK(U14(X1, X2, X3)) → U141(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
MARK(U15(X1, X2)) → U151(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
MARK(U16(X)) → U161(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
MARK(U22(X1, X2)) → U221(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
MARK(U23(X)) → U231(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
MARK(U41(X)) → U411(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
MARK(U52(X1, X2)) → U521(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
MARK(U62(X1, X2, X3)) → U621(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
MARK(U63(X1, X2, X3)) → U631(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
MARK(U64(X1, X2, X3)) → U641(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U151(X1, mark(X2)) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U161(mark(X)) → U161(X)
U161(active(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(X1, mark(X2)) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)
U231(mark(X)) → U231(X)
U231(active(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X)) → U411(X)
U411(active(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(X1, mark(X2)) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 23 SCCs with 66 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > PLUS1

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > S1

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, X2, mark(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)
U641(X1, X2, active(X3)) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, X2, active(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(X1, mark(X2), X3) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, mark(X2), X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)
U641(X1, active(X2), X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(X1, active(X2), X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  U641(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U64^11
active1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(mark(X1), X2, X3) → U641(X1, X2, X3)
U641(active(X1), X2, X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(active(X1), X2, X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(active(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, X2, mark(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U63^11

The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)
U631(X1, X2, active(X3)) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, X2, active(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(X1, mark(X2), X3) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, mark(X2), X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)
U631(X1, active(X2), X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(X1, active(X2), X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  U631(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U63^11
active1 > U63^11

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U631(active(X1), X2, X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(active(X1), X2, X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(active(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(52) TRUE

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, X2, mark(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U62^11

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)
U621(X1, X2, active(X3)) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, X2, active(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2), X3) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, mark(X2), X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)
U621(X1, active(X2), X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, active(X2), X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  U621(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U62^11
active1 > U62^11

The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U621(active(X1), X2, X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(active(X1), X2, X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(active(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, active(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U61^11
active1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(80) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(82) TRUE

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, active(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(93) TRUE

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, active(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(104) TRUE

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  U411(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U41^11

The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(111) TRUE

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U32^11

The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(129) TRUE

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(active(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  U231(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U23^11

The following usable rules [FROCOS05] were oriented: none

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(active(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(active(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(134) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(135) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(136) TRUE

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U22^11

The following usable rules [FROCOS05] were oriented: none

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)
U221(X1, active(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, active(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)
U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(145) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(147) TRUE

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(158) TRUE

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(active(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  U161(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U16^11

The following usable rules [FROCOS05] were oriented: none

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(active(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(active(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(163) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(165) TRUE

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > ISNAT1

The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(172) TRUE

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(X1, mark(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, mark(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U15^11

The following usable rules [FROCOS05] were oriented: none

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)
U151(X1, active(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(X1, active(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(177) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(mark(X1), X2) → U151(X1, X2)
U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(179) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(active(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(180) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(active(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(181) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(182) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(183) TRUE

(184) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, X2, mark(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U14^11

The following usable rules [FROCOS05] were oriented: none

(186) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)
U141(X1, X2, active(X3)) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(187) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, X2, active(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(188) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(X1, mark(X2), X3) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, mark(X2), X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(190) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)
U141(X1, active(X2), X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(191) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(X1, active(X2), X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  U141(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U14^11
active1 > U14^11

The following usable rules [FROCOS05] were oriented: none

(192) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U141(active(X1), X2, X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(193) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(mark(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(194) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(active(X1), X2, X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(195) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(active(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(196) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(197) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(198) TRUE

(199) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(200) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, X2, mark(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U13^11

The following usable rules [FROCOS05] were oriented: none

(201) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)
U131(X1, X2, active(X3)) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(202) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, X2, active(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(203) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(X1, mark(X2), X3) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(204) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, mark(X2), X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(205) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)
U131(X1, active(X2), X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(206) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(X1, active(X2), X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  U131(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U13^11
active1 > U13^11

The following usable rules [FROCOS05] were oriented: none

(207) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U131(active(X1), X2, X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(208) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(209) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(active(X1), X2, X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(210) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(active(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(211) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(212) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(213) TRUE

(214) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(215) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > ISNATKIND1

The following usable rules [FROCOS05] were oriented: none

(216) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(217) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(218) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(219) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(220) TRUE

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(222) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(223) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(224) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, active(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(225) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(226) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(228) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, active(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U12^11
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(229) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(230) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(231) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(232) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(233) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(234) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(235) TRUE

(236) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(237) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(238) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(239) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(240) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(241) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(242) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(243) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, active(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > U11^11
active1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(244) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(245) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(246) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(247) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(248) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(249) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(250) TRUE

(251) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNatKind(V1), V1, V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, V1, V2)) → MARK(U13(isNatKind(V2), V1, V2))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(U13(tt, V1, V2)) → MARK(U14(isNatKind(V2), V1, V2))
MARK(U13(X1, X2, X3)) → ACTIVE(U13(mark(X1), X2, X3))
ACTIVE(U14(tt, V1, V2)) → MARK(U15(isNat(V1), V2))
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → ACTIVE(U14(mark(X1), X2, X3))
ACTIVE(U15(tt, V2)) → MARK(U16(isNat(V2)))
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → ACTIVE(U15(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNatKind(V1), V1))
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U22(tt, V1)) → MARK(U23(isNat(V1)))
MARK(U16(X)) → ACTIVE(U16(mark(X)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNatKind(V2)))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N)) → MARK(U52(isNatKind(N), N))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → ACTIVE(U22(mark(X1), X2))
ACTIVE(U52(tt, N)) → MARK(N)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → ACTIVE(U23(mark(X)))
ACTIVE(U61(tt, M, N)) → MARK(U62(isNatKind(M), M, N))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U62(tt, M, N)) → MARK(U63(isNat(N), M, N))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U63(tt, M, N)) → MARK(U64(isNatKind(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → ACTIVE(U41(mark(X)))
ACTIVE(U64(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNatKind(V1), V1, V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(U31(isNatKind(V1), V2))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → ACTIVE(U62(mark(X1), X2, X3))
ACTIVE(isNatKind(s(V1))) → MARK(U41(isNatKind(V1)))
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → ACTIVE(U63(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(U51(isNat(N), N))
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → ACTIVE(U64(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U61(isNat(M), M, N))
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(isNatKind(X)) → active(isNatKind(X))
mark(U13(X1, X2, X3)) → active(U13(mark(X1), X2, X3))
mark(U14(X1, X2, X3)) → active(U14(mark(X1), X2, X3))
mark(U15(X1, X2)) → active(U15(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U16(X)) → active(U16(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X1, X2)) → active(U22(mark(X1), X2))
mark(U23(X)) → active(U23(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X)) → active(U41(mark(X)))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2, X3)) → active(U62(mark(X1), X2, X3))
mark(U63(X1, X2, X3)) → active(U63(mark(X1), X2, X3))
mark(U64(X1, X2, X3)) → active(U64(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)
U13(mark(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, mark(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, mark(X3)) → U13(X1, X2, X3)
U13(active(X1), X2, X3) → U13(X1, X2, X3)
U13(X1, active(X2), X3) → U13(X1, X2, X3)
U13(X1, X2, active(X3)) → U13(X1, X2, X3)
U14(mark(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, mark(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, mark(X3)) → U14(X1, X2, X3)
U14(active(X1), X2, X3) → U14(X1, X2, X3)
U14(X1, active(X2), X3) → U14(X1, X2, X3)
U14(X1, X2, active(X3)) → U14(X1, X2, X3)
U15(mark(X1), X2) → U15(X1, X2)
U15(X1, mark(X2)) → U15(X1, X2)
U15(active(X1), X2) → U15(X1, X2)
U15(X1, active(X2)) → U15(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U16(mark(X)) → U16(X)
U16(active(X)) → U16(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X1), X2) → U22(X1, X2)
U22(X1, mark(X2)) → U22(X1, X2)
U22(active(X1), X2) → U22(X1, X2)
U22(X1, active(X2)) → U22(X1, X2)
U23(mark(X)) → U23(X)
U23(active(X)) → U23(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X)) → U41(X)
U41(active(X)) → U41(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, mark(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, mark(X3)) → U62(X1, X2, X3)
U62(active(X1), X2, X3) → U62(X1, X2, X3)
U62(X1, active(X2), X3) → U62(X1, X2, X3)
U62(X1, X2, active(X3)) → U62(X1, X2, X3)
U63(mark(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, mark(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, mark(X3)) → U63(X1, X2, X3)
U63(active(X1), X2, X3) → U63(X1, X2, X3)
U63(X1, active(X2), X3) → U63(X1, X2, X3)
U63(X1, X2, active(X3)) → U63(X1, X2, X3)
U64(mark(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, mark(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, mark(X3)) → U64(X1, X2, X3)
U64(active(X1), X2, X3) → U64(X1, X2, X3)
U64(X1, active(X2), X3) → U64(X1, X2, X3)
U64(X1, X2, active(X3)) → U64(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.