(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__ISNATKIND(V1)
A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U12(tt, V1, V2) → A__ISNATKIND(V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__ISNATKIND(V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)
A__U15(tt, V2) → A__U16(a__isNat(V2))
A__U15(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V2) → A__U32(a__isNatKind(V2))
A__U31(tt, V2) → A__ISNATKIND(V2)
A__U51(tt, N) → A__U52(a__isNatKind(N), N)
A__U51(tt, N) → A__ISNATKIND(N)
A__U52(tt, N) → MARK(N)
A__U61(tt, M, N) → A__U62(a__isNatKind(M), M, N)
A__U61(tt, M, N) → A__ISNATKIND(M)
A__U62(tt, M, N) → A__U63(a__isNat(N), M, N)
A__U62(tt, M, N) → A__ISNAT(N)
A__U63(tt, M, N) → A__U64(a__isNatKind(N), M, N)
A__U63(tt, M, N) → A__ISNATKIND(N)
A__U64(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U64(tt, M, N) → MARK(N)
A__U64(tt, M, N) → MARK(M)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__U41(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U51(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U61(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U13(X1, X2, X3)) → A__U13(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → A__U14(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → A__U15(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U16(X)) → A__U16(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → A__U41(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → A__U62(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → A__U63(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → A__U64(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 30 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U31(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U31(x1, x2)  =  A__U31(x2)
tt  =  tt
A__ISNATKIND(x1)  =  A__ISNATKIND(x1)
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind
s(x1)  =  x1
0  =  0
a__U31(x1, x2)  =  a__U31
a__U41(x1)  =  a__U41(x1)
isNatKind(x1)  =  isNatKind
U31(x1, x2)  =  U31
U41(x1)  =  U41
a__U32(x1)  =  a__U32(x1)
U32(x1)  =  U32

Recursive Path Order [RPO].
Precedence:
plus2 > [AU311, tt, AISNATKIND1, aisNatKind, 0, aU31, aU411, isNatKind, U31, U41, aU321, U32]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U31(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__ISNATKIND(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2, x3)  =  A__U12(x2, x3)
tt  =  tt
A__U13(x1, x2, x3)  =  A__U13(x2, x3)
a__isNatKind(x1)  =  a__isNatKind(x1)
A__U14(x1, x2, x3)  =  A__U14(x2, x3)
A__U15(x1, x2)  =  A__U15(x2)
a__isNat(x1)  =  a__isNat
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x2, x3)
s(x1)  =  s(x1)
A__U21(x1, x2)  =  A__U21(x2)
A__U22(x1, x2)  =  A__U22(x2)
0  =  0
a__U31(x1, x2)  =  a__U31(x2)
a__U41(x1)  =  a__U41(x1)
isNatKind(x1)  =  isNatKind
a__U11(x1, x2, x3)  =  a__U11(x2, x3)
a__U21(x1, x2)  =  a__U21(x2)
isNat(x1)  =  isNat
a__U12(x1, x2, x3)  =  x1
a__U13(x1, x2, x3)  =  a__U13(x1, x3)
U13(x1, x2, x3)  =  x3
a__U14(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x3
a__U15(x1, x2)  =  a__U15(x1)
U15(x1, x2)  =  U15
U11(x1, x2, x3)  =  x3
U12(x1, x2, x3)  =  x3
U21(x1, x2)  =  U21
a__U22(x1, x2)  =  a__U22(x2)
U22(x1, x2)  =  U22
a__U23(x1)  =  a__U23(x1)
U23(x1)  =  U23
a__U16(x1)  =  a__U16(x1)
U16(x1)  =  U16
U31(x1, x2)  =  U31
U41(x1)  =  U41
a__U32(x1)  =  x1
U32(x1)  =  U32

Recursive Path Order [RPO].
Precedence:
plus2 > AU113 > [AU122, AU132, AU142] > [aisNatKind1, AU151, aisNat, AU211, AU221, aU311, aU411, isNatKind, aU112, aU211, isNat, aU132, aU151, U15, U21, aU221, U22, aU231, U23, aU161, U16, U31, U41, U32]
s1 > [aisNatKind1, AU151, aisNat, AU211, AU221, aU311, aU411, isNatKind, aU112, aU211, isNat, aU132, aU151, U15, U21, aU221, U22, aU231, U23, aU161, U16, U31, U41, U32]
0 > tt > [aisNatKind1, AU151, aisNat, AU211, AU221, aU311, aU411, isNatKind, aU112, aU211, isNat, aU132, aU151, U15, U21, aU221, U22, aU231, U23, aU161, U16, U31, U41, U32]


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(tt) → tt
a__U41(X) → U41(X)
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U32(X) → U32(X)

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
A__U51(tt, N) → A__U52(a__isNatKind(N), N)
A__U52(tt, N) → MARK(N)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
A__U61(tt, M, N) → A__U62(a__isNatKind(M), M, N)
A__U62(tt, M, N) → A__U63(a__isNat(N), M, N)
A__U63(tt, M, N) → A__U64(a__isNatKind(N), M, N)
A__U64(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U51(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U61(a__isNat(M), M, N)
A__U64(tt, M, N) → MARK(N)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → A__U62(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → A__U63(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → A__U64(mark(X1), X2, X3)
A__U64(tt, M, N) → MARK(M)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
A__U52(tt, N) → MARK(N)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
A__PLUS(N, 0) → A__U51(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U61(a__isNat(M), M, N)
A__U64(tt, M, N) → MARK(N)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → A__U62(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → A__U63(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → A__U64(mark(X1), X2, X3)
A__U64(tt, M, N) → MARK(M)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
A__U51(x1, x2)  =  A__U51(x2)
mark(x1)  =  x1
tt  =  tt
A__U52(x1, x2)  =  A__U52(x2)
a__isNatKind(x1)  =  a__isNatKind
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3)  =  U61(x1, x2, x3)
A__U61(x1, x2, x3)  =  A__U61(x2, x3)
A__U62(x1, x2, x3)  =  A__U62(x2, x3)
A__U63(x1, x2, x3)  =  A__U63(x2, x3)
a__isNat(x1)  =  a__isNat
A__U64(x1, x2, x3)  =  A__U64(x2, x3)
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
0  =  0
s(x1)  =  s(x1)
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U64(x1, x2, x3)  =  U64(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
a__U11(x1, x2, x3)  =  x1
a__U12(x1, x2, x3)  =  x1
isNatKind(x1)  =  isNatKind
a__U13(x1, x2, x3)  =  x1
a__U14(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x1
isNat(x1)  =  isNat
a__U16(x1)  =  x1
a__U21(x1, x2)  =  x1
a__U22(x1, x2)  =  x1
a__U23(x1)  =  x1
a__U31(x1, x2)  =  x1
a__U32(x1)  =  x1
a__U41(x1)  =  x1
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U52(x1, x2)  =  a__U52(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1, x2, x3)  =  a__U61(x1, x2, x3)
a__U62(x1, x2, x3)  =  a__U62(x1, x2, x3)
a__U63(x1, x2, x3)  =  a__U63(x1, x2, x3)
a__U64(x1, x2, x3)  =  a__U64(x1, x2, x3)

Recursive Path Order [RPO].
Precedence:
[U613, U623, U633, U643, plus2, aplus2, aU613, aU623, aU633, aU643] > [U512, aU512] > [AU511, AU521, U522, aU522]
[U613, U623, U633, U643, plus2, aplus2, aU613, aU623, aU633, aU643] > s1 > [tt, aisNatKind, aisNat, isNatKind, isNat] > [AU612, AU622, AU632, AU642, APLUS2] > [AU511, AU521, U522, aU522]
0 > [U512, aU512] > [AU511, AU521, U522, aU522]
0 > [tt, aisNatKind, aisNat, isNatKind, isNat] > [AU612, AU622, AU632, AU642, APLUS2] > [AU511, AU521, U522, aU522]


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U51(a__isNat(N), N)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U15(X1, X2) → U15(X1, X2)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U31(X1, X2) → U31(X1, X2)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U41(tt) → tt
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)
A__U51(tt, N) → A__U52(a__isNatKind(N), N)
A__U61(tt, M, N) → A__U62(a__isNatKind(M), M, N)
A__U62(tt, M, N) → A__U63(a__isNat(N), M, N)
A__U63(tt, M, N) → A__U64(a__isNatKind(N), M, N)
A__U64(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U12(x1, x2, x3)  =  U12(x1)
U11(x1, x2, x3)  =  U11(x1)
U13(x1, x2, x3)  =  U13(x1)
U14(x1, x2, x3)  =  U14(x1)
U15(x1, x2)  =  U15(x1)
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21(x1)
U22(x1, x2)  =  U22(x1)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1)
U32(x1)  =  U32(x1)
U41(x1)  =  U41(x1)

Recursive Path Order [RPO].
Precedence:
[MARK1, U121, U111, U131, U141, U151, U161, U211, U221, U231, U311, U321, U411]


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE