(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__ISNATKIND(V1)
A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U12(tt, V1, V2) → A__ISNATKIND(V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__ISNATKIND(V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)
A__U15(tt, V2) → A__U16(a__isNat(V2))
A__U15(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V2) → A__U32(a__isNatKind(V2))
A__U31(tt, V2) → A__ISNATKIND(V2)
A__U51(tt, N) → A__U52(a__isNatKind(N), N)
A__U51(tt, N) → A__ISNATKIND(N)
A__U52(tt, N) → MARK(N)
A__U61(tt, M, N) → A__U62(a__isNatKind(M), M, N)
A__U61(tt, M, N) → A__ISNATKIND(M)
A__U62(tt, M, N) → A__U63(a__isNat(N), M, N)
A__U62(tt, M, N) → A__ISNAT(N)
A__U63(tt, M, N) → A__U64(a__isNatKind(N), M, N)
A__U63(tt, M, N) → A__ISNATKIND(N)
A__U64(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U64(tt, M, N) → MARK(N)
A__U64(tt, M, N) → MARK(M)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__U41(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U51(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U61(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U13(X1, X2, X3)) → A__U13(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → A__U14(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → A__U15(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U16(X)) → A__U16(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → A__U41(mark(X))
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → A__U62(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → A__U63(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → A__U64(mark(X1), X2, X3)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 30 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U31(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U31(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U31(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U31(x1, x2)  =  A__U31(x2)
tt  =  tt
A__ISNATKIND(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
s(x1)  =  s(x1)
0  =  0
a__U41(x1)  =  a__U41
isNatKind(x1)  =  isNatKind(x1)
a__U31(x1, x2)  =  x1
U31(x1, x2)  =  U31(x1, x2)
a__U32(x1)  =  x1
U41(x1)  =  U41(x1)
U32(x1)  =  U32(x1)

Recursive path order with status [RPO].
Precedence:
tt > aisNatKind1
plus2 > AU311
aU41 > U411

Status:
AU311: multiset
plus2: multiset
tt: multiset
aisNatKind1: multiset
U312: multiset
U411: multiset
U321: multiset
s1: multiset
isNatKind1: multiset
0: multiset
aU41: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2, x3)  =  A__U12(x1, x2, x3)
tt  =  tt
A__U13(x1, x2, x3)  =  A__U13(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind(x1)
A__U14(x1, x2, x3)  =  A__U14(x2, x3)
A__U15(x1, x2)  =  A__U15(x2)
a__isNat(x1)  =  a__isNat
A__ISNAT(x1)  =  A__ISNAT(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x2, x3)
s(x1)  =  s(x1)
A__U21(x1, x2)  =  A__U21(x1, x2)
A__U22(x1, x2)  =  A__U22(x1, x2)
a__U12(x1, x2, x3)  =  a__U12(x1, x2, x3)
U12(x1, x2, x3)  =  x1
a__U11(x1, x2, x3)  =  a__U11(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
a__U15(x1, x2)  =  a__U15
U15(x1, x2)  =  U15(x1, x2)
a__U14(x1, x2, x3)  =  a__U14(x1, x3)
U14(x1, x2, x3)  =  U14(x1, x2, x3)
a__U13(x1, x2, x3)  =  x3
U13(x1, x2, x3)  =  U13(x1, x2, x3)
isNatKind(x1)  =  x1
a__U22(x1, x2)  =  x2
U22(x1, x2)  =  U22(x1, x2)
a__U21(x1, x2)  =  x1
U21(x1, x2)  =  U21(x1, x2)
a__U16(x1)  =  a__U16
U16(x1)  =  x1
isNat(x1)  =  isNat(x1)
a__U23(x1)  =  a__U23
a__U31(x1, x2)  =  a__U31(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
a__U32(x1)  =  a__U32(x1)
U23(x1)  =  x1
a__U41(x1)  =  a__U41(x1)
U41(x1)  =  U41(x1)
U32(x1)  =  U32
0  =  0

Recursive path order with status [RPO].
Precedence:
plus2 > AU113 > AU123 > AU133 > AU142 > AU151 > AISNAT1 > U312
plus2 > AU113 > AU123 > aisNatKind1 > tt > U312
plus2 > AU113 > AU123 > aisNatKind1 > aU411 > U411 > U312
plus2 > aU312 > aisNatKind1 > tt > U312
plus2 > aU312 > aisNatKind1 > aU411 > U411 > U312
plus2 > aU312 > aU321 > tt > U312
plus2 > aU312 > aU321 > U32 > U312
s1 > AU212 > aisNatKind1 > tt > U312
s1 > AU212 > aisNatKind1 > aU411 > U411 > U312
s1 > AU212 > AU222 > AISNAT1 > U312
aU112 > aisNatKind1 > tt > U312
aU112 > aisNatKind1 > aU411 > U411 > U312
aU112 > aU123 > U312
aU112 > U113 > U312
aU15 > aisNat > aisNatKind1 > tt > U312
aU15 > aisNat > aisNatKind1 > aU411 > U411 > U312
aU15 > aisNat > isNat1 > U312
aU15 > U152 > U312
aU15 > aU16 > tt > U312
aU142 > aisNat > aisNatKind1 > tt > U312
aU142 > aisNat > aisNatKind1 > aU411 > U411 > U312
aU142 > aisNat > isNat1 > U312
aU142 > U143 > U312
U133 > U312
U222 > U312
U212 > U312
aU23 > tt > U312
0 > tt > U312

Status:
AISNAT1: multiset
U411: multiset
aU112: multiset
U143: multiset
aU123: multiset
aU15: multiset
U212: multiset
AU113: multiset
tt: multiset
aU411: multiset
U133: multiset
aU142: multiset
s1: multiset
isNat1: multiset
AU142: multiset
AU151: multiset
plus2: multiset
AU222: multiset
U312: multiset
U32: multiset
U222: multiset
aU16: multiset
U113: multiset
aisNat: multiset
U152: multiset
0: multiset
aU321: multiset
AU123: multiset
AU212: multiset
aisNatKind1: multiset
aU312: multiset
AU133: multiset
aU23: multiset

The following usable rules [FROCOS05] were oriented:

a__isNatKind(X) → isNatKind(X)
a__U31(X1, X2) → U31(X1, X2)
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(X) → U41(X)
a__U32(X) → U32(X)
a__U41(tt) → tt
a__isNatKind(0) → tt
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X)) → MARK(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
A__U51(tt, N) → A__U52(a__isNatKind(N), N)
A__U52(tt, N) → MARK(N)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
A__U61(tt, M, N) → A__U62(a__isNatKind(M), M, N)
A__U62(tt, M, N) → A__U63(a__isNat(N), M, N)
A__U63(tt, M, N) → A__U64(a__isNatKind(N), M, N)
A__U64(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U51(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U61(a__isNat(M), M, N)
A__U64(tt, M, N) → MARK(N)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2, X3)) → A__U62(mark(X1), X2, X3)
MARK(U62(X1, X2, X3)) → MARK(X1)
MARK(U63(X1, X2, X3)) → A__U63(mark(X1), X2, X3)
MARK(U63(X1, X2, X3)) → MARK(X1)
MARK(U64(X1, X2, X3)) → A__U64(mark(X1), X2, X3)
A__U64(tt, M, N) → MARK(M)
MARK(U64(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V2) → a__U32(a__isNatKind(V2))
a__U32(tt) → tt
a__U41(tt) → tt
a__U51(tt, N) → a__U52(a__isNatKind(N), N)
a__U52(tt, N) → mark(N)
a__U61(tt, M, N) → a__U62(a__isNatKind(M), M, N)
a__U62(tt, M, N) → a__U63(a__isNat(N), M, N)
a__U63(tt, M, N) → a__U64(a__isNatKind(N), M, N)
a__U64(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U31(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U41(a__isNatKind(V1))
a__plus(N, 0) → a__U51(a__isNat(N), N)
a__plus(N, s(M)) → a__U61(a__isNat(M), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X)) → a__U41(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2, X3)) → a__U62(mark(X1), X2, X3)
mark(U63(X1, X2, X3)) → a__U63(mark(X1), X2, X3)
mark(U64(X1, X2, X3)) → a__U64(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__isNat(X) → isNat(X)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X) → U41(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X1, X2) → U52(X1, X2)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2, X3) → U62(X1, X2, X3)
a__U63(X1, X2, X3) → U63(X1, X2, X3)
a__U64(X1, X2, X3) → U64(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.