(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → U131(active(X1), X2, X3)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → U141(active(X1), X2, X3)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → U151(active(X1), X2)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U16(X)) → U161(active(X))
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → U231(active(X))
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → U321(active(X))
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → U411(active(X))
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → U611(active(X1), X2, X3)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → U621(active(X1), X2, X3)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → U631(active(X1), X2, X3)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → U641(active(X1), X2, X3)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U161(mark(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U231(mark(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X)) → U321(X)
U411(mark(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → ISNATKIND(proper(X))
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → U131(proper(X1), proper(X2), proper(X3))
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → U141(proper(X1), proper(X2), proper(X3))
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → U151(proper(X1), proper(X2))
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → U161(proper(X))
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → U231(proper(X))
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → U321(proper(X))
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → U411(proper(X))
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → U611(proper(X1), proper(X2), proper(X3))
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → U621(proper(X1), proper(X2), proper(X3))
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → U631(proper(X1), proper(X2), proper(X3))
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → U641(proper(X1), proper(X2), proper(X3))
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
ISNATKIND(ok(X)) → ISNATKIND(X)
U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
U151(ok(X1), ok(X2)) → U151(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
U161(ok(X)) → U161(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)
U231(ok(X)) → U231(X)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X)) → U321(X)
U411(ok(X)) → U411(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 25 SCCs with 83 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(ok(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(ok(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) TRUE

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U52^11


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(55) TRUE

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U51^11


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(69) TRUE

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U31^11


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(83) TRUE

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(ok(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(ok(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(90) TRUE

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U22^11


The following usable rules [FROCOS05] were oriented: none

(95) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(97) TRUE

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U21^11


The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(104) TRUE

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(ok(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(ok(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(111) TRUE

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(ok(X1), ok(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(ok(X1), ok(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(ok(X1), ok(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x2)
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
ok1 > U15^11


The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(123) TRUE

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(128) TRUE

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(133) TRUE

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(135) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(136) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(137) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(138) TRUE

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
isNatKind(x1)  =  isNatKind(x1)
U13(x1, x2, x3)  =  U13(x1, x2, x3)
U14(x1, x2, x3)  =  U14(x1, x2, x3)
U15(x1, x2)  =  U15(x1, x2)
isNat(x1)  =  isNat(x1)
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  U22(x1, x2)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1)  =  U41(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U64(x1, x2, x3)  =  U64(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(145) TRUE

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U12(x1, x2, x3)  =  U12(x1)
U11(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  U13(x1)
U14(x1, x2, x3)  =  U14(x1)
U15(x1, x2)  =  U15(x1)
U16(x1)  =  U16(x1)
U21(x1, x2)  =  x1
U22(x1, x2)  =  U22(x1)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1)
U32(x1)  =  U32(x1)
U41(x1)  =  U41(x1)
U51(x1, x2)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U61(x1, x2, x3)  =  U61(x1)
U62(x1, x2, x3)  =  U62(x1)
U63(x1, x2, x3)  =  U63(x1)
U64(x1, x2, x3)  =  U64(x1)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1)
U21(x1, x2)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
[ACTIVE1, U212]


The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(154) TRUE

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.