(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → U121(isNatKind(V1), V1, V2)
ACTIVE(U11(tt, V1, V2)) → ISNATKIND(V1)
ACTIVE(U12(tt, V1, V2)) → U131(isNatKind(V2), V1, V2)
ACTIVE(U12(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U13(tt, V1, V2)) → U141(isNatKind(V2), V1, V2)
ACTIVE(U13(tt, V1, V2)) → ISNATKIND(V2)
ACTIVE(U14(tt, V1, V2)) → U151(isNat(V1), V2)
ACTIVE(U14(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U15(tt, V2)) → U161(isNat(V2))
ACTIVE(U15(tt, V2)) → ISNAT(V2)
ACTIVE(U21(tt, V1)) → U221(isNatKind(V1), V1)
ACTIVE(U21(tt, V1)) → ISNATKIND(V1)
ACTIVE(U22(tt, V1)) → U231(isNat(V1))
ACTIVE(U22(tt, V1)) → ISNAT(V1)
ACTIVE(U31(tt, V2)) → U321(isNatKind(V2))
ACTIVE(U31(tt, V2)) → ISNATKIND(V2)
ACTIVE(U51(tt, N)) → U521(isNatKind(N), N)
ACTIVE(U51(tt, N)) → ISNATKIND(N)
ACTIVE(U61(tt, M, N)) → U621(isNatKind(M), M, N)
ACTIVE(U61(tt, M, N)) → ISNATKIND(M)
ACTIVE(U62(tt, M, N)) → U631(isNat(N), M, N)
ACTIVE(U62(tt, M, N)) → ISNAT(N)
ACTIVE(U63(tt, M, N)) → U641(isNatKind(N), M, N)
ACTIVE(U63(tt, M, N)) → ISNATKIND(N)
ACTIVE(U64(tt, M, N)) → S(plus(N, M))
ACTIVE(U64(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(plus(V1, V2))) → U111(isNatKind(V1), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → U311(isNatKind(V1), V2)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(s(V1))) → U411(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → U511(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → U611(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → U131(active(X1), X2, X3)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → U141(active(X1), X2, X3)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → U151(active(X1), X2)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U16(X)) → U161(active(X))
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → U231(active(X))
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → U321(active(X))
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → U411(active(X))
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → U611(active(X1), X2, X3)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → U621(active(X1), X2, X3)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → U631(active(X1), X2, X3)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → U641(active(X1), X2, X3)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)
U151(mark(X1), X2) → U151(X1, X2)
U161(mark(X)) → U161(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U231(mark(X)) → U231(X)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X)) → U321(X)
U411(mark(X)) → U411(X)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → ISNATKIND(proper(X))
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → U131(proper(X1), proper(X2), proper(X3))
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → U141(proper(X1), proper(X2), proper(X3))
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → U151(proper(X1), proper(X2))
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → U161(proper(X))
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → U231(proper(X))
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → U321(proper(X))
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → U411(proper(X))
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → U611(proper(X1), proper(X2), proper(X3))
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → U621(proper(X1), proper(X2), proper(X3))
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → U631(proper(X1), proper(X2), proper(X3))
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → U641(proper(X1), proper(X2), proper(X3))
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
ISNATKIND(ok(X)) → ISNATKIND(X)
U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
U151(ok(X1), ok(X2)) → U151(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
U161(ok(X)) → U161(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)
U231(ok(X)) → U231(X)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X)) → U321(X)
U411(ok(X)) → U411(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 25 SCCs with 83 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
ok1 > ISNAT1

Status:
ISNAT1: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(ok(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(ok(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
ok1 > ISNATKIND1

Status:
ISNATKIND1: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > PLUS1

Status:
PLUS1: [1]
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
mark1 > PLUS1

Status:
PLUS1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > PLUS2

Status:
PLUS2: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
ok1 > S1

Status:
S1: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > S1

Status:
S1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
U641(mark(X1), X2, X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(ok(X1), ok(X2), ok(X3)) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(mark(X1), X2, X3) → U641(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2, X3) → U641(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
U631(mark(X1), X2, X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(ok(X1), ok(X2), ok(X3)) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(mark(X1), X2, X3) → U631(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3) → U631(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
U621(mark(X1), X2, X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X1), ok(X2), ok(X3)) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2, X3) → U621(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3) → U621(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U52^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U52^11

Status:
U52^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U51^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U51^11

Status:
U51^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X)) → U411(X)
U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1)  =  U411(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
ok1 > U41^11

Status:
U41^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X)) → U411(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X)) → U411(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U41^11

Status:
U41^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
ok1 > U32^11

Status:
U32^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U32^11

Status:
U32^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(86) TRUE

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U31^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U31^11

Status:
U31^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(93) TRUE

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(ok(X)) → U231(X)
U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(ok(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1)  =  U231(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
ok1 > U23^11

Status:
U23^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X)) → U231(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X)) → U231(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U23^11

Status:
U23^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(100) TRUE

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U22^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U22^11

Status:
U22^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(107) TRUE

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U21^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U21^11

Status:
U21^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(114) TRUE

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(ok(X)) → U161(X)
U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(ok(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U161(x1)  =  U161(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
ok1 > U16^11

Status:
U16^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U161(mark(X)) → U161(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U161(mark(X)) → U161(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U16^11

Status:
U16^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(ok(X1), ok(X2)) → U151(X1, X2)
U151(mark(X1), X2) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(mark(X1), X2) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
U15^11: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U151(ok(X1), ok(X2)) → U151(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U151(ok(X1), ok(X2)) → U151(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U151(x1, x2)  =  U151(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Precedence:
ok1 > U15^11

Status:
U15^11: multiset
ok1: multiset

The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(128) TRUE

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
U141(mark(X1), X2, X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(ok(X1), ok(X2), ok(X3)) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U141(mark(X1), X2, X3) → U141(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U141(mark(X1), X2, X3) → U141(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U141(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(135) TRUE

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
U131(mark(X1), X2, X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(137) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(ok(X1), ok(X2), ok(X3)) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(mark(X1), X2, X3) → U131(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X1), X2, X3) → U131(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(142) TRUE

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(147) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(149) TRUE

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
ok1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(156) TRUE

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(isNatKind(X)) → PROPER(X)
PROPER(U13(X1, X2, X3)) → PROPER(X1)
PROPER(U13(X1, X2, X3)) → PROPER(X2)
PROPER(U13(X1, X2, X3)) → PROPER(X3)
PROPER(U14(X1, X2, X3)) → PROPER(X1)
PROPER(U14(X1, X2, X3)) → PROPER(X2)
PROPER(U14(X1, X2, X3)) → PROPER(X3)
PROPER(U15(X1, X2)) → PROPER(X1)
PROPER(U15(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U16(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U23(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2, X3)) → PROPER(X1)
PROPER(U62(X1, X2, X3)) → PROPER(X2)
PROPER(U62(X1, X2, X3)) → PROPER(X3)
PROPER(U63(X1, X2, X3)) → PROPER(X1)
PROPER(U63(X1, X2, X3)) → PROPER(X2)
PROPER(U63(X1, X2, X3)) → PROPER(X3)
PROPER(U64(X1, X2, X3)) → PROPER(X1)
PROPER(U64(X1, X2, X3)) → PROPER(X2)
PROPER(U64(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
U161 > PROPER1
U222 > PROPER1
U231 > PROPER1
U312 > PROPER1
U321 > PROPER1
U411 > PROPER1
U512 > PROPER1
U522 > PROPER1
U613 > PROPER1
U623 > PROPER1
U633 > PROPER1
U643 > PROPER1
s1 > PROPER1
plus2 > PROPER1

Status:
PROPER1: multiset
U113: multiset
U123: multiset
isNatKind1: multiset
U133: multiset
U143: multiset
U152: multiset
isNat1: multiset
U161: multiset
U212: multiset
U222: multiset
U231: multiset
U312: multiset
U321: multiset
U411: multiset
U512: multiset
U522: multiset
U613: multiset
U623: multiset
U633: multiset
U643: multiset
s1: multiset
plus2: multiset

The following usable rules [FROCOS05] were oriented: none

(159) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(161) TRUE

(162) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U14(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U16(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U13(x1, x2, x3)  =  U13(x1, x2, x3)
U14(x1, x2, x3)  =  U14(x1, x2, x3)
U15(x1, x2)  =  x1
U16(x1)  =  U16(x1)
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)

Recursive path order with status [RPO].
Precedence:
U113 > ACTIVE1
U133 > ACTIVE1

Status:
ACTIVE1: [1]
U113: multiset
U133: multiset
U143: multiset
U161: multiset
plus2: multiset

The following usable rules [FROCOS05] were oriented: none

(164) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U15(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U23(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U64(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  x1
U15(x1, x2)  =  U15(x1, x2)
U21(x1, x2)  =  x1
U22(x1, x2)  =  U22(x1)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
U64(x1, x2, x3)  =  U64(x1)
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U312 > ACTIVE1
U522 > ACTIVE1
U641 > ACTIVE1

Status:
ACTIVE1: [1]
U152: multiset
U221: multiset
U231: multiset
U312: multiset
U522: multiset
U641: multiset

The following usable rules [FROCOS05] were oriented: none

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U32(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  x1
U21(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1)  =  x1
U51(x1, x2)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U321 > ACTIVE1

Status:
ACTIVE1: multiset
U321: multiset

The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
U21(x1, x2)  =  x1
U41(x1)  =  x1
U51(x1, x2)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U123 > ACTIVE1

Status:
ACTIVE1: multiset
U123: multiset

The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  x1
U41(x1)  =  U41(x1)
U51(x1, x2)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U411 > ACTIVE1

Status:
ACTIVE1: multiset
U411: multiset

The following usable rules [FROCOS05] were oriented: none

(172) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(173) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  U21(x1, x2)
U51(x1, x2)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U212 > ACTIVE1

Status:
ACTIVE1: multiset
U212: multiset

The following usable rules [FROCOS05] were oriented: none

(174) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(175) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  x1
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2, x3)  =  x1
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U613 > ACTIVE1

Status:
ACTIVE1: multiset
U613: multiset

The following usable rules [FROCOS05] were oriented: none

(176) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(177) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U62(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  x1
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U623 > ACTIVE1

Status:
ACTIVE1: multiset
U623: multiset

The following usable rules [FROCOS05] were oriented: none

(178) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(179) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  U51(x1, x2)
U63(x1, x2, x3)  =  x1
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U512 > ACTIVE1

Status:
ACTIVE1: multiset
U512: multiset

The following usable rules [FROCOS05] were oriented: none

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U63(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U63(x1, x2, x3)  =  U63(x1, x2, x3)
s(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
U633 > ACTIVE1

Status:
ACTIVE1: multiset
U633: multiset

The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
s1 > ACTIVE1

Status:
ACTIVE1: multiset
s1: multiset

The following usable rules [FROCOS05] were oriented: none

(184) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(186) TRUE

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNatKind(V1), V1, V2))
active(U12(tt, V1, V2)) → mark(U13(isNatKind(V2), V1, V2))
active(U13(tt, V1, V2)) → mark(U14(isNatKind(V2), V1, V2))
active(U14(tt, V1, V2)) → mark(U15(isNat(V1), V2))
active(U15(tt, V2)) → mark(U16(isNat(V2)))
active(U16(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNatKind(V1), V1))
active(U22(tt, V1)) → mark(U23(isNat(V1)))
active(U23(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNatKind(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt)) → mark(tt)
active(U51(tt, N)) → mark(U52(isNatKind(N), N))
active(U52(tt, N)) → mark(N)
active(U61(tt, M, N)) → mark(U62(isNatKind(M), M, N))
active(U62(tt, M, N)) → mark(U63(isNat(N), M, N))
active(U63(tt, M, N)) → mark(U64(isNatKind(N), M, N))
active(U64(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNatKind(V1), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(U31(isNatKind(V1), V2))
active(isNatKind(s(V1))) → mark(U41(isNatKind(V1)))
active(plus(N, 0)) → mark(U51(isNat(N), N))
active(plus(N, s(M))) → mark(U61(isNat(M), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(U13(X1, X2, X3)) → U13(active(X1), X2, X3)
active(U14(X1, X2, X3)) → U14(active(X1), X2, X3)
active(U15(X1, X2)) → U15(active(X1), X2)
active(U16(X)) → U16(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X)) → U41(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2, X3)) → U62(active(X1), X2, X3)
active(U63(X1, X2, X3)) → U63(active(X1), X2, X3)
active(U64(X1, X2, X3)) → U64(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
U13(mark(X1), X2, X3) → mark(U13(X1, X2, X3))
U14(mark(X1), X2, X3) → mark(U14(X1, X2, X3))
U15(mark(X1), X2) → mark(U15(X1, X2))
U16(mark(X)) → mark(U16(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X)) → mark(U41(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2, X3) → mark(U62(X1, X2, X3))
U63(mark(X1), X2, X3) → mark(U63(X1, X2, X3))
U64(mark(X1), X2, X3) → mark(U64(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(U13(X1, X2, X3)) → U13(proper(X1), proper(X2), proper(X3))
proper(U14(X1, X2, X3)) → U14(proper(X1), proper(X2), proper(X3))
proper(U15(X1, X2)) → U15(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U16(X)) → U16(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X)) → U41(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2, X3)) → U62(proper(X1), proper(X2), proper(X3))
proper(U63(X1, X2, X3)) → U63(proper(X1), proper(X2), proper(X3))
proper(U64(X1, X2, X3)) → U64(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
isNatKind(ok(X)) → ok(isNatKind(X))
U13(ok(X1), ok(X2), ok(X3)) → ok(U13(X1, X2, X3))
U14(ok(X1), ok(X2), ok(X3)) → ok(U14(X1, X2, X3))
U15(ok(X1), ok(X2)) → ok(U15(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U16(ok(X)) → ok(U16(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X)) → ok(U41(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2), ok(X3)) → ok(U62(X1, X2, X3))
U63(ok(X1), ok(X2), ok(X3)) → ok(U63(X1, X2, X3))
U64(ok(X1), ok(X2), ok(X3)) → ok(U64(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.