(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNat(V1), V2)
ACTIVE(U11(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
ACTIVE(U12(tt, V2)) → U131(isNat(V2))
ACTIVE(U12(tt, V2)) → ISNAT(V2)
ACTIVE(U13(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U22(tt)) → MARK(tt)
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U41(tt, M, N)) → S(plus(N, M))
ACTIVE(U41(tt, M, N)) → PLUS(N, M)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
ACTIVE(isNatKind(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
ACTIVE(plus(N, 0)) → U311(and(isNat(N), isNatKind(N)), N)
ACTIVE(plus(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, 0)) → ISNATKIND(N)
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
ACTIVE(plus(N, s(M))) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(plus(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(plus(N, s(M))) → ISNATKIND(M)
ACTIVE(plus(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(plus(N, s(M))) → ISNATKIND(N)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
MARK(U13(X)) → U131(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → U221(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
MARK(U41(X1, X2, X3)) → U411(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U131(mark(X)) → U131(X)
U131(active(X)) → U131(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X)) → U221(X)
U221(active(X)) → U221(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 13 SCCs with 46 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(active(X)) → U131(X)
U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U31(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(s(X)) → MARK(X)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
0  =  0
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > tt > [U413, plus2] > U113 > U122
0 > tt > [U413, plus2] > U312
0 > tt > [U413, plus2] > s1 > U212
0 > tt > [U413, plus2] > s1 > isNatKind1
0 > tt > [U413, plus2] > and2

Status:
U113: [3,2,1]
tt: []
U122: [1,2]
U212: [2,1]
U312: [2,1]
U413: [3,2,1]
s1: [1]
plus2: [1,2]
and2: [2,1]
isNatKind1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  x1
U13(x1)  =  U13(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  U11(x2, x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  x2
U41(x1, x2, x3)  =  U41(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  x2
0  =  0
isNatKind(x1)  =  isNatKind

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U112, U412, plus2] > U122 > U131 > tt
[U112, U412, plus2] > U122 > [isNat1, U211, isNatKind] > tt

Status:
MARK1: [1]
U131: [1]
U112: [2,1]
tt: []
U122: [1,2]
isNat1: [1]
U211: [1]
U412: [1,2]
plus2: [2,1]
0: []
isNatKind: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  U22(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  x3
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
0  =  0
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U413, plus2] > [MARK1, U221, tt, U211, s1]
[U413, plus2] > U312
[U413, plus2] > and2
0 > [MARK1, U221, tt, U211, s1]
0 > U312

Status:
MARK1: [1]
U221: [1]
tt: []
U211: [1]
U312: [2,1]
U413: [3,2,1]
s1: [1]
plus2: [1,2]
and2: [1,2]
0: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE