(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNat(V1), V2)
ACTIVE(U11(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
ACTIVE(U12(tt, V2)) → U131(isNat(V2))
ACTIVE(U12(tt, V2)) → ISNAT(V2)
ACTIVE(U13(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U22(tt)) → MARK(tt)
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U41(tt, M, N)) → S(plus(N, M))
ACTIVE(U41(tt, M, N)) → PLUS(N, M)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
ACTIVE(isNatKind(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
ACTIVE(plus(N, 0)) → U311(and(isNat(N), isNatKind(N)), N)
ACTIVE(plus(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, 0)) → ISNATKIND(N)
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
ACTIVE(plus(N, s(M))) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(plus(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(plus(N, s(M))) → ISNATKIND(M)
ACTIVE(plus(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(plus(N, s(M))) → ISNATKIND(N)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
MARK(U13(X)) → U131(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → U221(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
MARK(U41(X1, X2, X3)) → U411(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U131(mark(X)) → U131(X)
U131(active(X)) → U131(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X)) → U221(X)
U221(active(X)) → U221(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 13 SCCs with 46 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNATKIND1, active1]

Status:
active1: multiset
ISNATKIND1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNATKIND1

Status:
ISNATKIND1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[AND1, mark1]

Status:
AND1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > AND2

Status:
AND2: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[AND1, active1]

Status:
active1: [1]
AND1: multiset


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PLUS1, mark1]

Status:
mark1: multiset
PLUS1: multiset


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > PLUS2

Status:
PLUS2: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[PLUS1, active1]

Status:
active1: [1]
PLUS1: multiset


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[S1, active1]

Status:
active1: multiset
S1: multiset


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > S1

Status:
mark1: multiset
S1: multiset


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
U41^13: multiset


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, active(X2), X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x2)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^11, active1]

Status:
active1: [1]
U41^11: multiset


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, X2, active(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  x3
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^11, active1]

Status:
active1: multiset
U41^11: multiset


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U31^11, mark1]

Status:
U31^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U31^12

Status:
U31^12: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U31^11, active1]

Status:
active1: [1]
U31^11: multiset


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  U221(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U22^11, active1]

Status:
active1: multiset
U22^11: multiset


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U22^11

Status:
U22^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(69) TRUE

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U21^11, mark1]

Status:
mark1: multiset
U21^11: multiset


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U21^12

Status:
U21^12: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U21^11, active1]

Status:
active1: [1]
U21^11: multiset


The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(80) TRUE

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(active(X)) → U131(X)
U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(active(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1)  =  U131(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U13^11, active1]

Status:
active1: multiset
U13^11: multiset


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U13^11

Status:
mark1: multiset
U13^11: multiset


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(87) TRUE

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNAT1, active1]

Status:
active1: multiset
ISNAT1: multiset


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNAT1

Status:
mark1: multiset
ISNAT1: multiset


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(94) TRUE

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U12^11, mark1]

Status:
U12^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U12^12

Status:
U12^12: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, active(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  x2
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U12^11, active1]

Status:
active1: [1]
U12^11: multiset


The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(105) TRUE

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U11^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, active(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U11^11, active1]

Status:
active1: [1]
U11^11: multiset


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x3
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U11^11, active1]

Status:
active1: multiset
U11^11: multiset


The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(116) TRUE

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U31(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(s(X)) → MARK(X)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, 0)) → MARK(U31(and(isNat(N), isNatKind(N)), N))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
0  =  0
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U413, plus2] > [U113, U122] > [MARK1, ACTIVE1] > U212
[U413, plus2] > [U113, U122] > [MARK1, ACTIVE1] > isNatKind1 > [tt, 0]
[U413, plus2] > U312 > [MARK1, ACTIVE1] > U212
[U413, plus2] > U312 > [MARK1, ACTIVE1] > isNatKind1 > [tt, 0]
[U413, plus2] > s1 > [MARK1, ACTIVE1] > U212
[U413, plus2] > s1 > [MARK1, ACTIVE1] > isNatKind1 > [tt, 0]
[U413, plus2] > and2 > [MARK1, ACTIVE1] > U212
[U413, plus2] > and2 > [MARK1, ACTIVE1] > isNatKind1 > [tt, 0]

Status:
plus2: [1,2]
U312: [1,2]
U413: [3,2,1]
U113: multiset
U122: multiset
isNatKind1: [1]
and2: [1,2]
0: multiset
U212: [2,1]
ACTIVE1: [1]
MARK1: [1]
tt: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented:

s(active(X)) → s(X)
s(mark(X)) → s(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
active(U13(tt)) → mark(tt)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
active(U22(tt)) → mark(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U13(active(X)) → U13(X)
U13(mark(X)) → U13(X)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
mark(0) → active(0)
U12(mark(X1), X2) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
active(isNatKind(0)) → mark(tt)
active(isNat(0)) → mark(tt)
mark(tt) → active(tt)
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
active(U31(tt, N)) → mark(N)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
mark(U13(X)) → active(U13(mark(X)))
active(and(tt, X)) → mark(X)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
mark(isNatKind(X)) → active(isNatKind(X))
mark(s(X)) → active(s(mark(X)))
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
mark(isNat(X)) → active(isNat(X))

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  U22(x1)
U13(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK1, U221]

Status:
U221: multiset
MARK1: multiset


The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
U131 > MARK1

Status:
MARK1: multiset
U131: multiset


The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(0) → active(0)
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(127) TRUE