(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__U12(tt, V2) → A__U13(a__isNat(V2))
A__U12(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, N) → MARK(N)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U41(tt, M, N) → MARK(N)
A__U41(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U41(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U41(tt, M, N) → MARK(M)
The TRS R consists of the following rules:
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.