(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__U12(tt, V2) → A__U13(a__isNat(V2))
A__U12(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, N) → MARK(N)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U41(tt, M, N) → MARK(N)
A__U41(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U41(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U41(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U41(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U41(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2)  =  x2
tt  =  tt
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x2, x3)
a__and(x1, x2)  =  a__and(x1, x2)
a__isNatKind(x1)  =  x1
isNatKind(x1)  =  x1
a__isNat(x1)  =  x1
A__AND(x1, x2)  =  x2
MARK(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
A__ISNATKIND(x1)  =  x1
s(x1)  =  s(x1)
A__U21(x1, x2)  =  x2
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
A__U31(x1, x2)  =  x2
U41(x1, x2, x3)  =  U41(x1, x2, x3)
A__U41(x1, x2, x3)  =  A__U41(x1, x2, x3)
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U41(x1, x2, x3)  =  a__U41(x1, x2, x3)
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U22(x1)  =  x1
a__U13(x1)  =  x1
a__U12(x1, x2)  =  a__U12(x1, x2)
a__U31(x1, x2)  =  a__U31(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[plus2, U413, aplus2, aU413] > [U113, aU113] > AU113
[plus2, U413, aplus2, aU413] > [U113, aU113] > [U122, aU122]
[plus2, U413, aplus2, aU413] > s1 > [U212, aU212]
[plus2, U413, aplus2, aU413] > s1 > [AU413, APLUS2] > [aand2, and2]
[plus2, U413, aplus2, aU413] > [U312, aU312]
0 > tt
0 > [aand2, and2]
0 > [U312, aU312]

Status:
plus2: [1,2]
APLUS2: [2,1]
U312: [2,1]
aand2: [1,2]
U413: [3,2,1]
U113: [3,2,1]
U122: [1,2]
and2: [1,2]
0: []
U212: [1,2]
aplus2: [1,2]
aU413: [3,2,1]
AU113: [1,2,3]
tt: []
aU312: [2,1]
aU113: [3,2,1]
aU212: [1,2]
s1: [1]
AU413: [2,3,1]
aU122: [1,2]


The following usable rules [FROCOS05] were oriented:

a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__isNatKind(0) → tt
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(0) → tt
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U22(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U13(tt) → tt
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U13(X) → U13(X)
a__isNat(X) → isNat(X)
a__U22(X) → U22(X)
a__U21(X1, X2) → U21(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U31(X1, X2) → U31(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__and(tt, X) → mark(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__U31(tt, N) → mark(N)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__AND(tt, X) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
A__U21(tt, V1) → A__ISNAT(V1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
A__U31(tt, N) → MARK(N)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  U22(x1)
U13(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK1, U221]

Status:
U221: [1]
MARK1: [1]


The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U13(x1)  =  U13(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U131: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE