(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(U11(tt)) → MARK(U12(tt))
ACTIVE(U11(tt)) → U121(tt)
ACTIVE(U12(tt)) → MARK(tt)
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U11(tt))
ACTIVE(isNePal(__(I, __(P, I)))) → U111(tt)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(__(X1, X2)) → __1(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(U11(X)) → U111(mark(X))
MARK(U11(X)) → MARK(X)
MARK(tt) → ACTIVE(tt)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
MARK(U12(X)) → U121(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
MARK(isNePal(X)) → ISNEPAL(mark(X))
MARK(isNePal(X)) → MARK(X)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)
U111(mark(X)) → U111(X)
U111(active(X)) → U111(X)
U121(mark(X)) → U121(X)
U121(active(X)) → U121(X)
ISNEPAL(mark(X)) → ISNEPAL(X)
ISNEPAL(active(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 11 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(active(X)) → ISNEPAL(X)
ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(active(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  ISNEPAL(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[ISNEPAL1, active1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(mark(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > ISNEPAL1


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[U12^11, active1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U12^11


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  U111(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[U11^11, active1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U11^11


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(mark(X1), X2) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[^12, mark1]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(active(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
[^11, active1]


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, active(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > _^11


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(__(X, nil)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(__(nil, X)) → MARK(X)
MARK(U12(X)) → MARK(X)
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
ACTIVE(U11(tt)) → MARK(U12(tt))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U11(tt))
MARK(isNePal(X)) → MARK(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → ACTIVE(U12(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
__(x1, x2)  =  __
ACTIVE(x1)  =  x1
mark(x1)  =  x1
U11(x1)  =  U11
nil  =  nil
U12(x1)  =  U12
isNePal(x1)  =  isNePal
tt  =  tt
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
[MARK, , U11, isNePal, active1] > tt > U12
nil > U12


The following usable rules [FROCOS05] were oriented:

__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
U11(active(X)) → U11(X)
U11(mark(X)) → U11(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(__(X, nil)) → MARK(X)
MARK(U11(X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
MARK(U12(X)) → MARK(X)
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
ACTIVE(U11(tt)) → MARK(U12(tt))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U11(tt))
MARK(isNePal(X)) → MARK(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.