(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(U11(tt)) → U121(tt)
ACTIVE(isNePal(__(I, __(P, I)))) → U111(tt)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → __1(X1, active(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X)) → U111(active(X))
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → U121(active(X))
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ISNEPAL(active(X))
ACTIVE(isNePal(X)) → ACTIVE(X)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
U111(mark(X)) → U111(X)
U121(mark(X)) → U121(X)
ISNEPAL(mark(X)) → ISNEPAL(X)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(U11(X)) → U111(proper(X))
PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → U121(proper(X))
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNePal(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
U111(ok(X)) → U111(X)
U121(ok(X)) → U121(X)
ISNEPAL(ok(X)) → ISNEPAL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 15 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)
ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(mark(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
[^11, mark1, ok1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(mark(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  U11(x1)
U12(x1)  =  U12(x1)
isNePal(x1)  =  isNePal(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  U11(x1)
U12(x1)  =  U12(x1)
isNePal(x1)  =  isNePal(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.