(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(U11(tt)) → U121(tt)
ACTIVE(isNePal(__(I, __(P, I)))) → U111(tt)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → __1(X1, active(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X)) → U111(active(X))
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → U121(active(X))
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ISNEPAL(active(X))
ACTIVE(isNePal(X)) → ACTIVE(X)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
U111(mark(X)) → U111(X)
U121(mark(X)) → U121(X)
ISNEPAL(mark(X)) → ISNEPAL(X)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(U11(X)) → U111(proper(X))
PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → U121(proper(X))
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNePal(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
U111(ok(X)) → U111(X)
U121(ok(X)) → U121(X)
ISNEPAL(ok(X)) → ISNEPAL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 15 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)
ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  ISNEPAL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNEPAL1, ok1]

Status:
ok1: multiset
ISNEPAL1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(mark(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNEPAL1

Status:
mark1: multiset
ISNEPAL1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U12^11, ok1]

Status:
U12^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U12^11

Status:
U12^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  U111(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U11^11, ok1]

Status:
U11^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U11^11

Status:
U11^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
_^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[^11, ok1]

Status:
ok1: [1]
_^11: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  x1
U12(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, 2]

Status:
PROPER1: multiset
_2: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1)  =  U11(x1)
U12(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, U111]

Status:
PROPER1: multiset
U111: multiset


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U12(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U12(x1)  =  U12(x1)
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, U121]

Status:
PROPER1: multiset
U121: multiset


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNePal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
isNePal1 > PROPER1

Status:
PROPER1: multiset
isNePal1: multiset


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  x1
U12(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, 2]

Status:
_2: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  U11(x1)
U12(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, U111]

Status:
U111: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(isNePal(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1)  =  U12(x1)
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, U121]

Status:
U121: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(isNePal(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isNePal(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
isNePal1 > ACTIVE1

Status:
isNePal1: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1)  =  U11(x1)
tt  =  tt
U12(x1)  =  U12(x1)
isNePal(x1)  =  isNePal(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
_2 > [mark1, tt]
nil > [mark1, tt]
isNePal1 > U111 > U121 > [mark1, tt]

Status:
tt: multiset
_2: [1,2]
U121: multiset
mark1: multiset
isNePal1: [1]
U111: [1]
nil: multiset


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
U12(ok(X)) → ok(U12(X))
U11(ok(X)) → ok(U11(X))
isNePal(ok(X)) → ok(isNePal(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U12(x1)  =  U12(x1)
U11(x1)  =  U11(x1)
isNePal(x1)  =  x1
__(x1, x2)  =  x1
mark(x1)  =  mark
nil  =  nil
tt  =  tt

Recursive path order with status [RPO].
Quasi-Precedence:
U121 > ok1 > [TOP1, mark]
U121 > tt > [TOP1, mark]
U111 > ok1 > [TOP1, mark]
U111 > tt > [TOP1, mark]
nil > [TOP1, mark]

Status:
tt: multiset
mark: multiset
U121: [1]
ok1: [1]
U111: multiset
TOP1: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

U12(ok(X)) → ok(U12(X))
U11(ok(X)) → ok(U11(X))
isNePal(ok(X)) → ok(isNePal(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
__(mark(X1), X2) → mark(__(X1, X2))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
active(__(X, nil)) → mark(X)
U12(mark(X)) → mark(U12(X))
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(__(X1, X2)) → __(X1, active(X2))
active(U12(tt)) → mark(tt)
active(U11(X)) → U11(active(X))
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(U12(X)) → U12(active(X))
active(__(X1, X2)) → __(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(U12(tt))
active(U12(tt)) → mark(tt)
active(isNePal(__(I, __(P, I)))) → mark(U11(tt))
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U12(X)) → U12(active(X))
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U12(mark(X)) → mark(U12(X))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U12(ok(X)) → ok(U12(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE