(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(U11(tt)) → MARK(tt)
ACTIVE(U21(tt, V2)) → MARK(U22(isList(V2)))
ACTIVE(U21(tt, V2)) → U221(isList(V2))
ACTIVE(U21(tt, V2)) → ISLIST(V2)
ACTIVE(U22(tt)) → MARK(tt)
ACTIVE(U31(tt)) → MARK(tt)
ACTIVE(U41(tt, V2)) → MARK(U42(isNeList(V2)))
ACTIVE(U41(tt, V2)) → U421(isNeList(V2))
ACTIVE(U41(tt, V2)) → ISNELIST(V2)
ACTIVE(U42(tt)) → MARK(tt)
ACTIVE(U51(tt, V2)) → MARK(U52(isList(V2)))
ACTIVE(U51(tt, V2)) → U521(isList(V2))
ACTIVE(U51(tt, V2)) → ISLIST(V2)
ACTIVE(U52(tt)) → MARK(tt)
ACTIVE(U61(tt)) → MARK(tt)
ACTIVE(U71(tt, P)) → MARK(U72(isPal(P)))
ACTIVE(U71(tt, P)) → U721(isPal(P))
ACTIVE(U71(tt, P)) → ISPAL(P)
ACTIVE(U72(tt)) → MARK(tt)
ACTIVE(U81(tt)) → MARK(tt)
ACTIVE(isList(V)) → MARK(U11(isNeList(V)))
ACTIVE(isList(V)) → U111(isNeList(V))
ACTIVE(isList(V)) → ISNELIST(V)
ACTIVE(isList(nil)) → MARK(tt)
ACTIVE(isList(__(V1, V2))) → MARK(U21(isList(V1), V2))
ACTIVE(isList(__(V1, V2))) → U211(isList(V1), V2)
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(V)) → MARK(U31(isQid(V)))
ACTIVE(isNeList(V)) → U311(isQid(V))
ACTIVE(isNeList(V)) → ISQID(V)
ACTIVE(isNeList(__(V1, V2))) → MARK(U41(isList(V1), V2))
ACTIVE(isNeList(__(V1, V2))) → U411(isList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(__(V1, V2))) → MARK(U51(isNeList(V1), V2))
ACTIVE(isNeList(__(V1, V2))) → U511(isNeList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
ACTIVE(isNePal(V)) → MARK(U61(isQid(V)))
ACTIVE(isNePal(V)) → U611(isQid(V))
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U71(isQid(I), P))
ACTIVE(isNePal(__(I, __(P, I)))) → U711(isQid(I), P)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
ACTIVE(isPal(V)) → MARK(U81(isNePal(V)))
ACTIVE(isPal(V)) → U811(isNePal(V))
ACTIVE(isPal(V)) → ISNEPAL(V)
ACTIVE(isPal(nil)) → MARK(tt)
ACTIVE(isQid(a)) → MARK(tt)
ACTIVE(isQid(e)) → MARK(tt)
ACTIVE(isQid(i)) → MARK(tt)
ACTIVE(isQid(o)) → MARK(tt)
ACTIVE(isQid(u)) → MARK(tt)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(__(X1, X2)) → __1(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(U11(X)) → U111(mark(X))
MARK(U11(X)) → MARK(X)
MARK(tt) → ACTIVE(tt)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → U221(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isList(X)) → ACTIVE(isList(X))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
MARK(U31(X)) → U311(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U42(X)) → U421(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
MARK(U52(X)) → U521(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
MARK(U61(X)) → U611(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
MARK(U71(X1, X2)) → U711(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → ACTIVE(U72(mark(X)))
MARK(U72(X)) → U721(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isPal(X)) → ACTIVE(isPal(X))
MARK(U81(X)) → ACTIVE(U81(mark(X)))
MARK(U81(X)) → U811(mark(X))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(a) → ACTIVE(a)
MARK(e) → ACTIVE(e)
MARK(i) → ACTIVE(i)
MARK(o) → ACTIVE(o)
MARK(u) → ACTIVE(u)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)
U111(mark(X)) → U111(X)
U111(active(X)) → U111(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X)) → U221(X)
U221(active(X)) → U221(X)
ISLIST(mark(X)) → ISLIST(X)
ISLIST(active(X)) → ISLIST(X)
U311(mark(X)) → U311(X)
U311(active(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
U421(mark(X)) → U421(X)
U421(active(X)) → U421(X)
ISNELIST(mark(X)) → ISNELIST(X)
ISNELIST(active(X)) → ISNELIST(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X)) → U521(X)
U521(active(X)) → U521(X)
U611(mark(X)) → U611(X)
U611(active(X)) → U611(X)
U711(mark(X1), X2) → U711(X1, X2)
U711(X1, mark(X2)) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)
U721(mark(X)) → U721(X)
U721(active(X)) → U721(X)
ISPAL(mark(X)) → ISPAL(X)
ISPAL(active(X)) → ISPAL(X)
U811(mark(X)) → U811(X)
U811(active(X)) → U811(X)
ISQID(mark(X)) → ISQID(X)
ISQID(active(X)) → ISQID(X)
ISNEPAL(mark(X)) → ISNEPAL(X)
ISNEPAL(active(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 19 SCCs with 61 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(active(X)) → ISNEPAL(X)
ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(active(X)) → ISQID(X)
ISQID(mark(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(active(X)) → U811(X)
U811(mark(X)) → U811(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(active(X)) → ISPAL(X)
ISPAL(mark(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(active(X)) → U721(X)
U721(mark(X)) → U721(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X)) → U521(X)
U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(active(X)) → ISNELIST(X)
ISNELIST(mark(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(active(X)) → U421(X)
U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(active(X)) → ISLIST(X)
ISLIST(mark(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(__(X, nil)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(__(nil, X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U21(tt, V2)) → MARK(U22(isList(V2)))
MARK(U22(X)) → MARK(X)
MARK(isList(X)) → ACTIVE(isList(X))
ACTIVE(U41(tt, V2)) → MARK(U42(isNeList(V2)))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(U51(tt, V2)) → MARK(U52(isList(V2)))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, P)) → MARK(U72(isPal(P)))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
ACTIVE(isList(V)) → MARK(U11(isNeList(V)))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → ACTIVE(isNeList(X))
ACTIVE(isList(__(V1, V2))) → MARK(U21(isList(V1), V2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNeList(V)) → MARK(U31(isQid(V)))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(isNeList(__(V1, V2))) → MARK(U41(isList(V1), V2))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(isNeList(__(V1, V2))) → MARK(U51(isNeList(V1), V2))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isNePal(V)) → MARK(U61(isQid(V)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → ACTIVE(U72(mark(X)))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U71(isQid(I), P))
MARK(U72(X)) → MARK(X)
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isPal(V)) → MARK(U81(isNePal(V)))
MARK(U81(X)) → ACTIVE(U81(mark(X)))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(__(X, nil)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(__(nil, X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U21(tt, V2)) → MARK(U22(isList(V2)))
MARK(isList(X)) → ACTIVE(isList(X))
ACTIVE(U41(tt, V2)) → MARK(U42(isNeList(V2)))
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(U51(tt, V2)) → MARK(U52(isList(V2)))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, P)) → MARK(U72(isPal(P)))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
ACTIVE(isList(V)) → MARK(U11(isNeList(V)))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → ACTIVE(isNeList(X))
ACTIVE(isList(__(V1, V2))) → MARK(U21(isList(V1), V2))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNeList(V)) → MARK(U31(isQid(V)))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(isNeList(__(V1, V2))) → MARK(U41(isList(V1), V2))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(isNeList(__(V1, V2))) → MARK(U51(isNeList(V1), V2))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isNePal(V)) → MARK(U61(isQid(V)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → ACTIVE(U72(mark(X)))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(U71(isQid(I), P))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isPal(V)) → MARK(U81(isNePal(V)))
MARK(U81(X)) → ACTIVE(U81(mark(X)))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
__(x1, x2)  =  __(x1, x2)
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
U11(x1)  =  U11(x1)
nil  =  nil
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
tt  =  tt
isList(x1)  =  isList(x1)
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  U42(x1)
isNeList(x1)  =  isNeList(x1)
U31(x1)  =  U31(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  U52(x1)
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1
isPal(x1)  =  isPal(x1)
isQid(x1)  =  x1
U61(x1)  =  U61(x1)
isNePal(x1)  =  isNePal(x1)
U81(x1)  =  U81(x1)
active(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
_2 > U212 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U111
_2 > U212 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U421
_2 > U212 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U521
_2 > U212 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U111
_2 > U212 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U421
_2 > U212 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U521
_2 > U412 > isNeList1 > MARK1 > U611 > ACTIVE1 > U111
_2 > U412 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U421
_2 > U412 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U521
_2 > U412 > isNeList1 > MARK1 > U811 > ACTIVE1 > U111
_2 > U412 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U421
_2 > U412 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U521
_2 > U512 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U111
_2 > U512 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U421
_2 > U512 > isList1 > isNeList1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U521
_2 > U512 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U111
_2 > U512 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U421
_2 > U512 > isList1 > isNeList1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U521
_2 > U712 > isPal1 > isNePal1 > MARK1 > U611 > ACTIVE1 > U111
_2 > U712 > isPal1 > isNePal1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U421
_2 > U712 > isPal1 > isNePal1 > MARK1 > U611 > ACTIVE1 > U311 > tt > U521
_2 > U712 > isPal1 > isNePal1 > MARK1 > U811 > ACTIVE1 > U111
_2 > U712 > isPal1 > isNePal1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U421
_2 > U712 > isPal1 > isNePal1 > MARK1 > U811 > ACTIVE1 > U311 > tt > U521
a > tt > U421
a > tt > U521
e > tt > U421
e > tt > U521
i > tt > U421
i > tt > U521
o > tt > U421
o > tt > U521
u > tt > U421
u > tt > U521

The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U72(X)) → MARK(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U72(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U22(x1)  =  x1
U72(x1)  =  U72(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
U11(x1)  =  x1
tt  =  tt
U21(x1, x2)  =  x2
isList(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x2)
U42(x1)  =  U42(x1)
isNeList(x1)  =  x1
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52
U61(x1)  =  U61
U71(x1, x2)  =  U71(x2)
isPal(x1)  =  isPal(x1)
U81(x1)  =  U81
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
_2 > U411 > U421 > U721
_2 > U511 > U52 > tt > U421 > U721
nil > tt > U421 > U721
isNePal1 > U61 > tt > U421 > U721
isNePal1 > U711 > isPal1 > U81 > tt > U421 > U721
a > tt > U421 > U721
e > tt > U421 > U721
i > tt > U421 > U721
o > tt > U421 > U721
u > tt > U421 > U721

The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  U22(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
U11(x1)  =  U11
tt  =  tt
U21(x1, x2)  =  U21(x1, x2)
isList(x1)  =  isList(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNeList(x1)  =  isNeList
U51(x1, x2)  =  U51
U52(x1)  =  U52
U61(x1)  =  U61(x1)
U71(x1, x2)  =  U71(x1)
U72(x1)  =  x1
isPal(x1)  =  isPal
U81(x1)  =  U81
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
MARK1 > U311
_2 > U212 > isList1 > U11 > tt > U221 > U311
_2 > U41 > U42 > tt > U221 > U311
_2 > isQid > tt > U221 > U311
nil > U311
isNeList > U41 > U42 > tt > U221 > U311
isNeList > U51 > isList1 > U11 > tt > U221 > U311
isNeList > U51 > U52 > tt > U221 > U311
isNeList > isQid > tt > U221 > U311
isNePal > U611 > U311
isNePal > U711 > isPal > U81 > tt > U221 > U311
isNePal > isQid > tt > U221 > U311
a > U311
e > tt > U221 > U311
i > tt > U221 > U311
o > U311
u > tt > U221 > U311

The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isList(X)) → active(isList(X))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNeList(X)) → active(isNeList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(U61(X)) → active(U61(mark(X)))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(U72(X)) → active(U72(mark(X)))
mark(isPal(X)) → active(isPal(X))
mark(U81(X)) → active(U81(mark(X)))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U72(mark(X)) → U72(X)
U72(active(X)) → U72(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)
U81(mark(X)) → U81(X)
U81(active(X)) → U81(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE