(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
A__U21(tt, V2) → A__U22(a__isList(V2))
A__U21(tt, V2) → A__ISLIST(V2)
A__U41(tt, V2) → A__U42(a__isNeList(V2))
A__U41(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V2) → A__U52(a__isList(V2))
A__U51(tt, V2) → A__ISLIST(V2)
A__U71(tt, P) → A__U72(a__isPal(P))
A__U71(tt, P) → A__ISPAL(P)
A__ISLIST(V) → A__U11(a__isNeList(V))
A__ISLIST(V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(V) → A__U31(a__isQid(V))
A__ISNELIST(V) → A__ISQID(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
A__ISNEPAL(V) → A__U61(a__isQid(V))
A__ISNEPAL(V) → A__ISQID(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
A__ISNEPAL(__(I, __(P, I))) → A__ISQID(I)
A__ISPAL(V) → A__U81(a__isNePal(V))
A__ISPAL(V) → A__ISNEPAL(V)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → A__U11(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isList(X)) → A__ISLIST(X)
MARK(U31(X)) → A__U31(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → A__U72(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isPal(X)) → A__ISPAL(X)
MARK(U81(X)) → A__U81(mark(X))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → A__ISQID(X)
MARK(isNePal(X)) → A__ISNEPAL(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 28 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U71(tt, P) → A__ISPAL(P)
A__ISPAL(V) → A__ISNEPAL(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U71(tt, P) → A__ISPAL(P)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U71(x1, x2)  =  A__U71(x2)
tt  =  tt
A__ISPAL(x1)  =  x1
A__ISNEPAL(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
a__isQid(x1)  =  a__isQid
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
isQid(x1)  =  isQid(x1)

Lexicographic path order with status [LPO].
Precedence:
_2 > AU711
aisQid > tt
aisQid > isQid1
u > tt

Status:
AU711: [1]
tt: []
_2: [1,2]
aisQid: []
a: []
e: []
i: []
o: []
u: []
isQid1: [1]

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISPAL(V) → A__ISNEPAL(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__ISNELIST(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__U41(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__U51(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__U41(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__U51(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U21(x1, x2)  =  x2
tt  =  tt
A__ISLIST(x1)  =  x1
A__ISNELIST(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
A__U41(x1, x2)  =  A__U41(x2)
a__isList(x1)  =  a__isList(x1)
A__U51(x1, x2)  =  A__U51(x2)
a__isNeList(x1)  =  a__isNeList
a__U11(x1)  =  a__U11(x1)
nil  =  nil
a__U21(x1, x2)  =  a__U21(x1)
isList(x1)  =  isList(x1)
a__U31(x1)  =  x1
a__isQid(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1)
a__U51(x1, x2)  =  a__U51(x1)
isNeList(x1)  =  isNeList
U41(x1, x2)  =  U41(x1, x2)
U11(x1)  =  U11
U51(x1, x2)  =  U51(x1, x2)
a__U52(x1)  =  x1
U52(x1)  =  U52(x1)
U21(x1, x2)  =  U21(x1, x2)
a__U22(x1)  =  x1
U22(x1)  =  U22(x1)
a__U42(x1)  =  x1
U42(x1)  =  U42(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
isQid(x1)  =  isQid(x1)
U31(x1)  =  U31(x1)

Lexicographic path order with status [LPO].
Precedence:
_2 > AU411 > U311
_2 > AU511 > U311
_2 > aU411 > U311
_2 > aU511 > U512 > U311
aisNeList > aisList1 > tt > U311
aisNeList > aisList1 > aU111 > U11 > U311
aisNeList > aU411 > U311
aisNeList > aU511 > U512 > U311
nil > U311
aU211 > aisList1 > tt > U311
aU211 > aisList1 > aU111 > U11 > U311
isList1 > U311
isNeList > U311
U412 > U311
U521 > U311
U212 > U311
U221 > U311
U421 > U311
a > U311
e > U311
i > U311
o > U311
u > U311
isQid1 > U311

Status:
tt: []
_2: [1,2]
AU411: [1]
aisList1: [1]
AU511: [1]
aisNeList: []
aU111: [1]
nil: []
aU211: [1]
isList1: [1]
aU411: [1]
aU511: [1]
isNeList: []
U412: [1,2]
U11: []
U512: [1,2]
U521: [1]
U212: [1,2]
U221: [1]
U421: [1]
a: []
e: []
i: []
o: []
u: []
isQid1: [1]
U311: [1]

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__ISNELIST(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.